200
U. Samuni et al./Journal of Molecular Structure 449 (1998) 177–201
[4] R. Ponec, G. Yuzhakov, Y. Haas, U. Samuni, J. Org. Chem. 62
(1997) 2757–2762.
[5] U. Samuni, R. Fraenkel, Y. Haas, R. Fajgar, J. Pola, J. Am.
Chem. Soc. 118 (1996) 3687.
[6] E. Kno¨zinger, W. Schuller, W. Langel, J. Phys. Chem. 97
(1993) 927.
[7] W.B. DeMore, Int. J. Chem. Kin. 1 (1969) 209.
[8] K.H. Becker, U. Schurath, H. Seitz, Int. J. Chem. Kin. 6 (1974)
725.
[9] R. Atkinson, W.P.L. Carter, Chem. Rev. 84 (1984) 437–470.
[10] L.A. Hull, I.C. Hisatsune, J. Heicklen, J. Am. Chem. Soc. 94
(1972) 4856–4864.
[11] B. Nelander, L. Nord, J. Am. Chem. Soc. 101 (1979)
3769.
reactants were found to be trapped in a configuration
that does not enable the formation of the primary
ozonide. In contrast, MD simulations of the TME–
ozone pair show that deposition in argon leads to trap-
ping sites capable of supporting the reaction. The tem-
perature dependence of the reaction rate is interpreted
as showing that intra-site reorientation is needed for
the reaction to proceed. An attempt to overcome the
mechanical fragility of the amorphous CO2 matrix
through the use of argon/CO2 mixed matrices showed
that a reaction commenced only when CO2 percentage
was 90%. The absence of reaction in the mixed
matrices (argon percentage being larger than 10%)
is attributed to the absence of CO2 crystallization
under these conditions and to limited number of reac-
tant pairs formed owing to phase separation.
It is concluded that in both argon and CO2 matrices,
the addition of ozone to the olefins takes place even at
very low temperatures, provided the pairs can attain
the necessary relative orientation. This implies that
the high-temperature activation energy, which was
reported to be as high as 5 kcal/mol in the case of
ethylene, is irrelevant to the matrix studies.
[12] K.A. Singmaster, G.C. Pimentel, J. Phys. Chem. 94 (1990)
5226.
[13] H. Niki, P.D. Maker, C.M. Savage, L.P. Breitenbach, M.D.
Hurley, J. Phys. Chem. 91 (1987) 941–946.
[14] R.I. Martinez, J.T. Herron, J. Phys. Chem. 91 (1987) 946–953.
[15] D. Grosjean, E. Grosjean, E.L. Williams II, Environ. Sci.
Tech. 28 (1994) 186–196.
[16] R. Fajgar, J. Vitek, Y. Haas, J. Pola, J. Am. Chem. Soc.,
submitted.
[17] S.D. Razumovskii, L.V. Berezova, Izvest. Akad. Nauk
S.S.S.R., Sov. Chim. 1 (1968) 207.
[18] N.I. Boldenkov, S.D. Razumovskii, Khim. Prom-st. 2 (1977)
100–103.
[19] B. Mile, G.W Morris, W.G. Alcock, J. Chem. Soc., Perkin II,
1644 (1979).
[20] P.S. Bailey, Ozonation in Organic Chemsitry, vol. 1,
Academic Press, New York, 1978.
[21] P.S. Bailey, Chem. Rev. 58 (1958) 925.
[22] K. Griesbaum, W. Volpp, R. Greinert, J. Am. Chem. Soc. 107
(1985) 5309.
Quantum chemical calculations of the structures
and IR spectra of the primary and secondary ozonides
of 1-hexene and TME are reported. The calculated
spectra are in reasonable agreement with the experi-
mental ones. The calculated structures were used in
the MD simulations of the trapping in solid argon.
[23] K. Griesbaum, W. Volpp, R. Greinert, H.J. Greunig, J.
Schmid, H. Henke, J. Org. Chem. 54 (1989) 383–389; and
private correspondence.
Acknowledgements
[24] M. Falk, P.F. Seto, Can. J. Spectrosc. 31 (1986) 134.
[25] M. Falk, Can. J. Chem. Phys. 86 (1987) 560.
[26] H.L. Lo¨wen, K.D. Bier, H.J. Jodl, A. Lo¨wenschuss, A. Givan,
J. Chem. Phys. 90 (1989) 5309.
This research was supported under grant no. HRN-
2078, C12-223, US–Israel Cooperative Development
Research Progrwn, Office of the Science Advisor, US
Agency for International Development. The Farkas
Center is supported by Minerva mbH, Munich. We
thank Professor K. Griesbaurn for useful correspon-
dence and for reporting some of his data prior to pub-
lication.
[27] W. Schulze, H. Abe, Chem. Phys. 52 (1980) 381–388.
[28] M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G.
Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A.
Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-
Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J.
Cioslowski, B.B. Stefanov, A. Nanayakkara, M.
Challacombe C.Y. Peng, P.Y. Ayala, W. Chen, M.W.
Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L.
Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P.
Stewart, M. Head-Gordon, C. Gonzalez, J.A. Pople,
Gaussian 94, Revision DA, Gaussian, Inc., Pittsburgh, PA,
1995.
References
[29] W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56
(1972) 2257.
[30] M.W. Wong, Chem. Phys. Lett. 256 (1996) 391–399.
[31] R. Fraenkel, Y. Haas, Chem. Phys. 186 (1994) 185.
[1] R. Criegee, Rec. Chem. Prog. 18 (1957) 111.
[2] R. Kuczkowski, Chem. Soc. Rev. 21 (1992) 79–83.
[3] D. Cremer, E. Kraka, M.L. McKee, T.P. Radhakrishnan,
Chem. Phys. Lett. 187 (1991) 491.