Article
Biochemistry, Vol. 49, No. 12, 2010 2655
inhibition may function to maintain a basal level of IDO activity,
where formation of kynurenine pathway metabolites is mini-
mized. Subsequent changes in the gene expression of allosteric
effectors, i.e., cytochrome b5, could then lead to activation of
IDO generating elevated levels of kynurenine and downstream
metabolites that participate in immunosuppression (63-66).
8. Uyttenhove, C. (2003) Evidence for a tumoral immune resistance
mechanism based on tryptophan degradation by indoleamine 2,3-
dioxygenase. Nat. Med. 9, 1269–1274.
9. Orabona, C., Puccetti, P., Vacca, C., Bicciato, S., Luchini, A.,
Fallarino, F., Bianchi, R., Velardi, E., Perruccio, K., Velardi, A.,
Bronte, V., Fioretti, M. C., and Grohmann, U. (2006) Toward the
identification of a tolerogenic signature in IDO-competent dendritic
cells. Blood 107, 2846–2854.
10. Odemuyiwa, S. O., Ghahary, A., Li, Y., Puttagunta, L., Lee, J. E.,
Musat-Marcu, S., Ghahary, A., and Moqbel, R. (2004) Cutting edge:
human eosinophils regulate T cell subset selection through indolea-
mine 2,3-dioxygenase. J. Immunol. 173, 5909–5913.
11. Yoshida, R., Imanishi, J., Oku, T., Kishida, T., and Hayaishi, O.
(1981) Induction of pulmonary indoleamine 2,3-dioxygenase by
interferon. Proc. Natl. Acad. Sci. U.S.A. 78, 129–132.
12. Pfefferkorn, E. R. (1984) Interferon gamma blocks the growth of
Toxoplasma gondii in human fibroblasts by inducing the host cells to
degrade tryptophan. Proc. Natl. Acad. Sci. U.S.A. 81, 908–912.
13. Munn, D. H. (1998) Prevention of allogeneic fetal rejection by
tryptophan catabolism. Science 281, 1191–1193.
14. Grohmann, U. (2002) CTLA-4-Ig regulates tryptophan catabolism
in vivo. Nat. Immunol. 3, 1097–1101.
15. Swanson, K. A., Zheng, Y., Heidler, K. M., Mizobuchi, T., and
Wilkes, D. S. (2004) CDllcþ cells modulate pulmonary immune
responses by production of indoleamine 2,3-dioxygenase. Am. J.
Resp. Cell Mol. Biol. 30, 311–318.
16. Gurtner, G. J., Newberry, R. D., Schloemann, S. R., McDonald,
K. G., and Stenson, W. F. (2003) Inhibition of indoleamine 2,3-
dioxygenase augments trinitrobenzene sulfonic acid colitis in mice.
Gastroenterology 125, 1762–1773.
CONCLUSION
The current study investigated whether CPR alone can support
IDO enzymatic activity and whether the addition of additional
electron transfer partners or cofactors used to support IDO
activity such as cytochrome b5 and methylene blue differentially
impact IDO activity. The data presented demonstrate that CPR
is capable of supporting IDO enzymatic activity and display
differential kinetics for the two isomers of Trp, with the observed
L
-Trp partial substrate inhibition arguing for the binding of two
substrate molecules. Addition of cytochrome b5 to CPR-sup-
ported -Trp incubations resulted in a switch from negative to
L
positive homotropic cooperativity. Addition of methylene blue
(minus ascorbate) to CPR-supported incubations also resulted in
modulation of IDO enzymatic activity but differed from that of
cytochrome b5 in that it resulted in a decrease in catalytic
efficiency for both L- and D-Trp oxidations driven by a decrease
in affinity of IDO for both substrates. In conclusion, our data
indicate that CPR is capable of supporting IDO activity in vitro
and oxidation of tryptophan by IDO displays substrate stereo-
chemistry dependent atypical kinetics which can be modulated by
the addition of cytochrome b5.
17. Hayashi, T., Beck, L., Rossetto, C., Gong, X., Takikawa, O.,
Takabayashi, K., Broide, D. H., Carson, D. A., and Raz, E. (2004)
Inhibition of experimental asthma by indoleamine 2,3-dioxygenase.
J. Clin. Invest. 114, 270–279.
18. Kwidzinski, E., Bunse, J., Aktas, O., Richter, D., Mutlu, L., Zipp, F.,
Nitsch, R., and Bechmann, I. (2005) Indolamine 2,3-dioxygenase is
expressed in the CNS and down-regulates autoimmune inflammation.
FASEB J. 19, 1347–1349.
ACKNOWLEDGMENT
19. Brandacher, G. (2006) Prognostic value of indoleamine 2,3-dioxygen-
ase expression in colorectal cancer: effect on tumor-infiltrating T cells.
Clin. Cancer Res. 12, 1144–1151.
We are grateful to Dr. John J. Hill at Amgen Department of
Protein Sciences for helpful discussions and critical review of the
manuscript.
20. Okamoto, A., Nikaido, T., Ochiai, K., Takakura, S., Saito, M., Aoki,
Y., Ishii, N., Yanaihara, N., Yamada, K., Takikawa, O., Kawaguchi,
R., Isonishi, S., Tanaka, T., and Urashima, M. (2005) Indoleamine 2,3-
dioxygenase serves as a marker of poor prognosis in gene expression
profiles of serous ovarian cancer cells. Clin. Cancer Res. 11, 6030–6039.
21. Yamazaki, H., Nakano, M., Imai, Y., Ueng, Y. F., Guengerich, F. P.,
and Shimada, T. (1996) Roles of cytochrome b5 in the oxidation of
testosterone and nifedipine by recombinant cytochrome P450 3A4 and
by human liver microsomes. Arch. Biochem. Biophys. 325, 174–182.
22. Bell, L. C., and Guengerich, F. P. (1997) Oxidation kinetics of ethanol
by human cytochrome P450 2E1. Rate-limiting product release
accounts for effects of isotopic hydrogen substitution and cytochrome
b5 on steady-state kinetics. J. Biol. Chem. 272, 29643–29651.
23. Perret, A., and Pompon, D. (1998) Electron shuttle between mem-
brane-bound cytochrome P450 3A4 and b5 rules uncoupling mechan-
isms. Biochemistry 37, 11412–11424.
SUPPORTING INFORMATION AVAILABLE
Two tables presenting data on the changes in kinetic constants
for L- and D-Trp oxidation by recombinant human IDO in the
presence of CPR (Table 1) and CPR plus cytochrome b5 (Table 2)
with two figures presenting the UV-vis spectrum of our recom-
binant IDO preparation and a figure of the observed steady-state
turnover rates for L- and D-Trp with ascorbate and methylene
blue as the reducing system. This material is available free of
24. Reedy, C. J., Elvekrog, M. M., and Gibney, B. R. (2008) Development
of a heme protein structure-electrochemical function database. Nu-
cleic Acids Res. 36, D307–D313.
REFERENCES
1. Yamamoto, S., and Hayaishi, O. (1967) Tryptophan pyrrolase of
rabbit intestine. D- and L-tryptophan-cleaving enzyme or enzymes.
J. Biol. Chem. 242, 5260–5266.
2. Higuchi, K., and Hayaishi, O. (1967) Enzymic formation of D-
kynurenine from D-tryptophan. Arch. Biochem. Biophys. 120, 397–
403.
3. Hirata, F., and Hayaishi, O. (1972) New degradative routes of
5-hydroxytryptophan and serotonin by intestinal tryptophan 2,3-
dioxygenase. Biochem. Biophys. Res. Commun. 47, 1112–1119.
4. Moffett, J. R., and Namboodiri, M. A. (2003) Tryptophan and the
immune response. Immunol. Cell Biol. 81, 247–265.
5. Mellor, A. L., and Munn, D. H. (2004) IDO expression by dendritic
cells: tolerance and tryptophan catabolism. Nat. Rev. 4, 762–774.
6. Beutelspacher, S. C. (2006) Expression of indoleamine 2,3-dioxygen-
ase (IDO) by endothelial cells: implications for the control of allor-
esponses. Am. J. Transplant. 6, 1320–1330.
25. Maghzal, G. J., Thomas, S. R., Hunt, N. H., and Stocker, R. (2008)
Cytochrome b5, not superoxide anion radical, is a major reductant of
indoleamine 2,3-dioxygenase in human cells. J. Biol. Chem. 283,
12014–12025.
26. Vottero, E., Mitchell, D. A., Page, M. J., MacGillivray, R. T.,
Sadowski, I. J., Roberge, M., and Mauk, A. G. (2006) Cytochrome
b(5) is a major reductant in vivo of human indoleamine 2,3-dioxy-
genase expressed in yeast. FEBS Lett. 580, 2265–2268.
27. Paine, M. J. I. (2005) Electron Transfer Partners of Cytochrome P450,
in Cytochrome P450: Structure, Mechanism, and Biochemistry (Ortiz
de Montellano, P. R., Ed.) 3rd ed., pp 115-148, Kluwer Academic
Publishers, New York.
28. Schenkman, J. B., Voznesensky, A. I., and Jansson, I. (1994) Influence
of ionic strength on the P450 monooxygenase reaction and role of
cytochrome b5 in the process. Arch. Biochem. Biophys. 314, 234–241.
29. Yamazaki, H., Johnson, W. W., Ueng, Y. F., Shimada, T., and
Guengerich, F. P. (1996) Lack of electron transfer from cytochrome b5
in stimulation of catalytic activities of cytochrome P450 3A4. Characteri-
zation of a reconstituted cytochrome P450 3A4/NADPH-cytochrome
7. Munn, D. H. (2004) Expression of indoleamine 2,3-dioxygenase by
plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin.
Invest. 114, 280–290.