10.1002/chem.201901077
Chemistry - A European Journal
FULL PAPER
[29] K. Beck, C. Reslow-Jacobsen, M. Hornum, C. Henriksen, P. Nielsen, Bio-
org. Med. Chem. Lett. 2019, 29, 740–743.
Keywords: oligonucleotides • double-headed nucleotides • 2,6-
diaminopurine • hypoxanthine
[30] F. H. Martin, M. M. Castro, F. Aboul-ela, I. Tinoco, Nucleic Acids Res.
1985, 13, 8927–8938.
[1]
[2]
[3]
[4]
C. Chen, Z. Yang, X. Tang, Med. Res. Rev. 2018, 38, 829–869.
W. B. Wan, P. P. Seth, J. Med. Chem. 2016, 59, 9645–9667.
G. F. Deleavey, M. J. Damha, Chem. Biol. 2012, 19, 937–954.
T. R. Gingeras, R. Higuchi, L. J. Kricka, Y. M. D. Lo, C. T. Wittwer, Clin.
Chem. 2005, 51, 661–671.
[31] A. V. Aerschot, B. Peeters, H. Vanderhaeghe, Nucleosides Nucleotides
1987, 6, 437–439.
[32] F. Seela, Y. Chen, Nucleic Acids Res. 1995, 23, 2499–2505.
[33] H. Liu, R. Nichols, BioTechniques 1994, 16, 24–26.
[34] F. B. Howard, H. T. Miles, Biochemistry 1984, 23, 6723–6732.
[35] S. Gryaznov, R. G. Schultz, Tetrahedron Lett. 1994, 35, 2489–2492.
[36] M. J. Cairns, T. Thomas, C. E. Beltran, D. Tillett, BMC Genomics 2009,
10, 344.
[5]
J. D. Watson, A. A. Caudy, R. M. Myers, J. A. Witkowski, Recombinant
DNA: Genes and Genomes—A Short Course, W. H. Freeman & Co.,
New York, 2007.
[6]
[7]
[8]
[9]
J. M. Butler, Forensic DNA Typing: Biology, Technology, and Genetics
of STR Markers, Elsevier Academic Press, New York, 2005.
E. O. Wiley, B. S. Lieberman, Phylogenetics: Theory and Practice of Phy-
logenetic Systematics, John Wiley & Sons, Hoboken, 2011.
N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust, B. Sipos,
E. Birney, Nature 2013, 494, 77–80.
[37] U. B. Voss, A. Chollet, A. D. B. Malcolm, Biochem. Soc. Trans. 1989, 17,
913–913.
[38] F. B. Howard, C. Chen, J. S. Cohen, H. T. Miles, Biochem. Biophys. Res.
Commun. 1984, 118, 848–853.
[39] T. Brown, A. G. Craig, Nucleosides Nucleotides 1989, 8, 1051–1051.
[40] A. De Mico, R. Margarita, L. Parlanti, A. Vescovi, G. Piancatelli, J. Org.
Chem. 1997, 62, 6974–6977.
G. M. Church, Y. Gao, S. Kosuri, Science 2012, 337, 1628–1628.
[10] N. C. Seeman, Annu. Rev. Biochem. 2010, 79, 65–87.
[11] O. I. Wilner, I. Willner, Chem. Rev. 2012, 112, 2528–2556.
[12] N. C. Seeman, Trends Biochem. Sci. 2005, 30, 119–125.
[13] A. Kuzuya, Y. Ohya, Acc. Chem. Res. 2014, 47, 1742–1749.
[14] W. Xu, K. M. Chan, E. T. Kool, Nat. Chem. 2017, 9, 1043–1055.
[15] R. S. Geary, D. Norris, R. Yu, C. F. Bennett, Adv. Drug Deliv. Rev. 2015,
87, 46–51.
[41] S. Lemaire, I. Houpis, R. Wechselberger, J. Langens, W. A. A. Vermeu-
len, N. Smets, U. Nettekoven, Y. Wang, T. Xiao, H. Qu, J. Org. Chem.
2011, 76, 297–300.
[42] E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353–1364.
[43] Y. Hayakawa, M. Hirose, R. Noyori, J. Org. Chem. 1993, 58, 5551–5555.
[44] S. Pitsch, S. Wendeborn, R. Krishnamurthy, A. Holzner, M. Minton, M.
Bolli, C. Miculca, N. Windhab, R. Micura, M. Stanek, B. Jaun, A. Eschen-
moser, Helv. Chim. Acta 2003, 86, 4270–4363.
[16] V. B. Pinheiro, A. I. Taylor, C. Cozens, M. Abramov, M. Renders, S.
Zhang, J. C. Chaput, J. Wengel, S.-Y. Peak-Chew, S. H. McLaughlin, P.
Herdewijn, P. Holliger, Science 2012, 336, 341–344.
[45] P. Børsting, K. E. Nielsen, P. Nielsen, Org. Biomol. Chem. 2005, 3,
2183–2190.
[17] A. W. Feldman, F. E. Romesberg, Acc. Chem. Res. 2018, 51, 394–403.
[18] P. K. Sharma, P. Kumar, P. Nielsen, Aust. J. Chem. 2016, 69, 1094–
1101.
[46] A. Canol, M. F. Goodman, R. Eritja, Nucleosides Nucleotides 1994, 13,
501–509.
[47] C. Rosenbohm, D. S. Pedersen, M. Frieden, F. R. Jensen, S. Arent, S.
Larsen, T. Koch, Bioorg. Med. Chem. 2004, 12, 2385–2396.
[48] V. Boudou, K. Rothenbacher, A. V. Aerschot, P. Herdewijn, Nucleosides
Nucleotides 1999, 18, 1429–1431.
[19] P. Kielkowski, H. Cahová, R. Pohl, M. Hocek, Bioorg. Med. Chem. 2016,
24, 1268–1276.
[20] D. S. Chatzileontiadou, V. Parmenopoulou, S. Manta, A. L. Kantsadi, P.
Kylindri, M. Griniezaki, F. Kontopoulou, A. Telopoulou, H. Prokova, D.
Panagopoulos, E. Boix, N. A. Balatsos, D. Komiotis, D. D. Leonidas,
Bioorg. Chem. 2015, 63, 152–165.
[49] D. A. Case, V. Babin, J. T. Berryman, R. M. Betz, Q. Cai, D. S. Cerutti,
T. E. Cheatham III, T. A. Darden, R. E. Duke, H. Gohlke, A. W. Goetz, S.
Gusarov, N. Homeyer, P. Janowski, J. Kaus, I. Kolossváry, A. Kovalenko,
T.S. Lee, S. LeGrand, T. Luchko, R. Luo, B. Madej, K. M. Merz, F.
Paesani, D. R. Roe, A. Roitberg, C. Sagui, R. Salomon-Ferrer, G. Seabra,
C. L. Simmerling, W. Smith, J. Swails, R. C. Walker, J. Wang, R. M. Wolf,
X. Wu, P. A. Kollman. Amber14; University of California, San Francisco,
2014.
[21] S. L. Pedersen, P. Nielsen, Org. Biomol. Chem. 2005, 3, 3570-3575.
[22] T. Umemoto, J. Wengel, A. S. Madsen, Org. Biomol. Chem. 2009, 7,
1793–1797.
[23] T. Wu, K. Nauwelaerts, A. van Aerschot, M. Froeyen, E. Lescrinier, P.
Herdewijn, J. Org. Chem. 2006, 71, 5423–5431.
[24] M. Hornum, P. K. Sharma, C. Reslow-Jacobsen, P. Kumar, M. Petersen,
P. Nielsen, Chem. Commun. 2017, 53, 9717–9720.
[50] X.-J. Lu, W. K. Olson, Nucleic Acids Res. 2003, 31, 5108–5121.
[51] N. Martín-Pintado, M. Yahyaee-Anzahaee, R. Campos-Olivas, A. M. No-
ronha, C. J. Wilds, M. J. Damha, C. González, Nucleic Acids Res., 2012,
40, 9329–9339.
[25] P. Kumar, C. S. Madsen, P. Nielsen, Bioorg. Med. Chem. Lett. 2013, 23,
6847–6850.
[26] C. S. Madsen, S. Witzke, P. Kumar, K. Negi, P. K. Sharma, M. Petersen,
P. Nielsen, Chem. Eur. J. 2012, 18, 7434–7442.
[52] D. Venkateswarlu, D. M. Ferguson, J. Am. Chem. Soc. 1999, 121, 5609–
5610.
[27] P. Kumar, P. K. Sharma, C. S. Madsen, M. Petersen, P. Nielsen, Chem-
BioChem 2013, 14, 1072–1074.
[53] X.-J. Lu, W. K. Olson, Nat. Protoc. 2008, 3, 1213–1227.
[54] J. C. Morales, E. T. Kool, J. Am. Chem. Soc. 1999, 121, 2323–2324.
[28] P. Kumar, P. K. Sharma, P. Nielsen, J. Org. Chem. 2014, 79, 11534–
11540.
This article is protected by copyright. All rights reserved.