(14) Holliger, C.; Schumacher, W. Antonie Van Leeuwenhoek 1994,
66, 239-246.
TABLE 3. Extrapolated Kinetic Parameters for PCE Degradation
under Field Conditions
(15) Gossett, J. M. Microbiological Aspects Relevant to Natural
Attenuation of Chlorinated Ethenes. Ward, C. H., Ed.; In
Symposium on Natural Attenuation of Chlorinated Organics in
Ground Water; EPA: Dallas, TX, 1996; pp 10-13.
(16) McCarty, P. L. Biotic and Abiotic Transformations of Chlorinated
Solvents in Ground Water. Ward, C. H., Ed.; In Symposium on
Natural Attenuation of Chlorinated Organics in Ground Water;
EPA: Dallas, TX, 1996; pp 5-9.
0
reductants
CRC,F (mM/L)a
k1 (day-1
)
t1/2 (days)b
pyrite
m agnetite
0.428
0.042
0.054
13
608
1.1 × 10-3
a
b
Initial reductive capacity concentration in the field. Degradation
half-life.
(17) Butler, E. C. Ph.D. Dissertation, University of Michigan: Ann
Arbor, MI, 1998.
half-life for PCE degradation by pyrite under field conditions
is smaller than often observed in the field, which indicates
that abiotic degradation by pyrite could be an important
factor. The half-life for PCE degradation by magnetite is much
larger but could be reduced if Fe(II) were formed biologically.
These results indicate that abiotic reductive dechlorination
may be an important factor in determining fate of chlorinated
organics during natural attenuation.
(18) Roberts, A. L.; Sanborn, P. N.; Gschwend, P. M. Environ. Sci.
Technol. 1992, 26, 2263-2274.
(19) Schwarzenbach, R. P.; Giger, W.; Schaffner, C.; Wanner, O.
Environ. Sci. Technol. 1985, 19, 322-327.
(20) Hagg, W. R.; Mill, T. Environ. Toxicol. Chem. 1988, 7, 917-924.
(21) Barbash, J. E. Ph.D. Dissertation, Stanford University: Stanford,
CA, 1993.
(22) Kriegman-King, M. R.; Reinhard, M. Environ. Sci. Technol. 1992,
26, 2198-2206.
(23) Curtis, G. P.; Reinhard, M. Environ. Sci. Technol. 1994, 28, 2393-
Acknowledgments
2401.
(24) Dunnivant, F. M.; Schwarzenbach, R. P.; Macalady, D. L. Environ.
Sci. Technol. 1992, 26, 2133-2141.
(25) Schwarzenbach, R. P.; Stierli, R.; Lanz, K.; Zeyer, J. Environ. Sci.
Technol. 1990, 24, 1566-1574.
(26) Burris, D. R.; Delcomyn, C. A.; Smith, M. H.; Roberts, A. L.
Environ. Sci. Technol. 1996, 30, 3047-3052.
(27) Assaf-anid, N.; Hayes, K. F.; Vogel, T. M. Environ. Sci. Technol.
1994, 28, 246-252.
This research has been funded entirely with funds from the
State of Texas as part of the program of the Texas Hazardous
Waste Research Center. The contents do not necessarily
reflect the views and policies of the sponsor nor does the
mention of trade names or commercial products constitute
endorsement or recommendation for use.
(28) Chiu, P.; Reinhard, M. Environ. Sci. Technol. 1995, 29, 595-603.
(29) Chiu, P.; Reinhard, M. Environ. Sci. Technol. 1996, 30, 1882-
1889.
(30) Schreier, C. G. M.S. Thesis, Stanford University: Stanford, CA,
1990.
(31) Kriegman-King, M. R.; Reinhard, M. Chapter 16: Reduction of
Hexachloroethane and Carbon Tetrachloride at Surface of
Biotite, Vermiculite, Pyrite, and Marcasite. In Organic Substances
and Sediments in Water; Baker, R. A., Ed.; Lewis Publishers Inc.:
Chelsea, MI, 1991.
Supporting Information Available
Anaerobic environments, preparation of soil minerals, char-
acterization of soil minerals, derivation of kinetic equations,
and solid phase partition coefficients for chlorinated eth-
ylenes, X-ray diffraction patterns of pyrite and magnetite
used in this research (Figure S-1), reductive transformation
of 0.25 mM TCE in 0.084 g/ g pyrite suspension (Figure S-2),
reductive dechlorination of 0.4 mM VC by magnetite (0.063
g/ g) with and without 42.6 mM Fe(II) addition (Figure S-3),
characteristics of soil minerals (Table S-1), and solid phase
partitioning coefficients (ks) and partitioning factors (pCE) of
chlorinated ethylenes in pyrite and magnetite suspensions
(Table S-2). This material is available free of charge via the
Internet at http:/ / pubs.acs.org.
(32) Weerasooriya, R.; Dharmasena, B. Chemosphere 2001, 42, 389-
396.
(33) Klausen, J.; Tro¨ ber, S. P.; Haderlein, S. B.; Schwarzenbach, R.
P. Environ. Sci. Technol. 1995, 29, 2396-2404.
(34) Kriegman-King, M. R. Environ. Sci. Technol. 1994, 28, 692-700.
(35) Sivavec, T. M.; Horney, D. P. Reduction of Chlorinated Solvents
by Fe(II) Minerals. 213th ACS National Meeting; ACS, 1997; pp
115-117.
Literature Cited
(36) Butler, E. C.; Hayes, K. F. Environ. Sci. Technol. 1998, 32, 1276-
1284.
(1) McCarty, P. L.; Semprini, L. Handbook of Bioremediation; Lewis
Publishers: Boca Raton, FL, 1994; pp 87-116.
(2) Bouwer, E. J. Handbook of Bioremediation; Lewis Publishers:
Boca Raton, FL, 1994; pp 149-175.
(3) Weaver, J. W.; Wilson, J. T.; Kampbell, D. H. Case Study of Natural
Attenuation of Trichloroethene at St. Joseph, Michigan. Ward,
C. H., Ed.; In Symposium on Natural Attenuation of Chlorinated
Organics in Ground Water; EPA: Dallas, TX, 1996; pp 69-73.
(4) EPA U.S. Common Chemicals Found at Superfund Sites; EPA
540/ R-94/ 044; Office of Emergency and Remedial Response:
Washington, DC, 1994.
(5) Leisinger, T. In Biotechnology; Rehm, H. J., Reed, G., Eds.; VCH
Verlagsgesellschaft: Weinheim, 1986; Vol. 8, pp 475-513.
(6) Hutzinger, O.; Veerkamp, W. In Microbial Degradation of
Xenobiotic and Recalcitrant Compounds; Leisinger, T., Ed.;
Academic Press: London, 1981.
(7) Hileman, B. Chem. Eng. News 1993, 19, 11-20.
(8) Ukrainczyk, L.; Chibwe, M.; Pinnavaia, T. J.; Boyd, S. A. Environ.
Sci. Technol. 1995, 29, 439-445.
(9) Bagley, D. M.; Gossett, J. M. Appl. Environ. Microbiol. 1990, 56,
2511-2516.
(10) Freedman, D. L.; Gossett, J. M. Appl. Environ. Microbiol. 1989,
55, 2144-2151.
(11) Fathepure, B. Z.; Nengu, J. P.; Boyd, S. A. Appl. Environ. Microbiol.
1987, 53, 2671-2674.
(12) Fathepure, B. Z.; Boyd, S. A. Appl. Environ. Microbiol. 1988, 54,
2976-2980.
(37) Butler, E. C.; Hayes, K. F. Environ. Sci. Technol. 1999, 33, 2021-
2027.
(38) Lee, W.; Batchelor, B. Abiotic Reductive Dechlorination of
Chlorinated Ethylenes by Iron-bearing Soil Minerals and
Potential Interactions with Biotic Processes. In Chemical-
Biological Interactions in Contaminant Fate; Tratnyek, P. G.,
Adriaens, P., Roden, E. E., Eds.; 220th ACS National Meeting;
American Chemical Society: Washington, DC, 2000; pp 338-
340.
(39) McCormick, M. L.; Kim, H. S.; Adriaens, P. Transformation of
Tetrachloromethane in
a Defined Iron Reducing Culture:
Relative Contributions of Cell and Mineral Mediated Reactions.
In Specialty Chemicals in the Environment; Stone, A. T., Ed.;
219th ACS National Meeting; American Chemical Society: San
Francisco, CA, 2000; pp 138-141.
(40) Lee, W. Ph.D. Dissertation, Texas A&M University: College
Station, TX, 2001.
(41) Taylor, R. M.; Maher, B. A.; Self, P. G. Clay Miner. 1987, 22,
411-422.
(42) Kriegman-King, M. R. Ph.D. Dissertation, Stanford University:
Stanford, CA, 1993.
(43) Hwang, I.; Batchelor, B. Environ. Sci. Technol. 2000, 34, 5017-
5022.
(44) Gossett, J. M. Environ. Sci. Technol. 1987, 21, 202-208.
(45) Arnold, W. A.; Roberts, A. L. Environ. Sci. Technol. 1998, 32,
3017-3025.
(13) Holliger, C.; Schraa, G.; Stams, A. J. M.; Zehnder, A. J. B. Appl.
Environ. Microbiol. 1993, 59, 2991-2997.
(46) Mackay, D.; Shiu, W. Y. J. Phys. Chem. Ref. Data 1981, 10, 1175-
1199.
9
VOL. 36, NO. 23, 2002 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 5 1 5 3