study reductive acrylate elimination techniques which may ulti-
E. Gutierrez-Puebla, A. Monge, M. L. Poveda and C. Ruiz, J. Am. Chem.
Soc., 1985, 107, 5529.
(a) S. A. Cohen and J. E. Bercaw, Organometallics, 1985, 4, 1006;
mately yield new catalytic CO fixation methods.
2
6
(b) H. Hoberg, Y. Peres, C. Kruger and Y. H. Tsay, Angew. Chem., Int.
Ed. Engl., 1987, 26, 771; (c) H. G. Alt and C. E. Denner, J. Organomet.
Chem., 1990, 390, 53; (d) B. Hessen, A. Meetsma, F. Bolhuis, J. Teuben,
G. Helgesson and S. Janger, Organometallics, 1990, 9, 1925;
Acknowledgements
We gratefully acknowledge funding by the Air Force Office of
Scientific Research (Award No. FA9550-11-1-0041), the U.S.
Department of Energy-National Energy Technology Laboratory
(e) H. Hoberg and A. Ballesteros, J. Organomet. Chem., 1991, 411, C11;
(f) H. Hoberg, A. Ballesteros, A. Sigan, C. Jegat, D. Barhausen and
A. Milchereit, J. Organomet. Chem., 1991, 407, C23; (g) M. Aresta and
E. Quaranta, J. Organomet. Chem., 1993, 463, 215.
(a) A. Galindo, A. Pastor, P. Perez and E. Carmona, Organometallics,
1993, 12, 4443; (b) C. Collazo, M. del Mar Conejo, A. Pastor and
A. Galindo, Inorg. Chim. Acta, 1998, 272, 125.
(a) C. Bruckmeier, M. W. Lehenmeier, R. Reichardt, S. Vagin and
B. Rieger, Organometallics, 2010, 29, 2199; (b) S. Y. T. Lee, M. Cokoja,
M. Drees, Y. Li, J. Mink, W. A. Herrmann and F. E. Kuhn,
ChemSusChem, 2011, 4, 1275.
(Award No. DE-FE0004498) and Brown University. J. W. also
7
8
thanks Brown University for a Summer Undergraduate Teaching
and Research Award.
References
9
R. Fischer, J. Langer, G. Malassa, D. Walther, H. Gorls and G. Vaughan,
Chem. Commun., 2006, 2510.
1
(a) Chemicals and Materials from Renewable Resources, ed. J. Bozell,
ACS Symposium Series 784, American Chemical Society, Washington,
DC, 2001; (b) Feedstocks for the Future, ed. J. Bozell and M. K. Patel,
ACS Symposium Series 921, American Chemical Society, Washington,
DC, 2006; (c) P. N. R. Vennestrom, C. M. Osmundsen, C. H. Christensen
and E. Taarning, Angew. Chem., Int. Ed., 2011, 50, 10502; (d) Renewable
Raw Materials: New Feedstocks for the Chemical Industry, ed. R. Ulber,
D. Sell and T. Hirth, Wiley-VCH, Weinheim, 2011.
(a) A. Behr, Angew. Chem., Int. Ed. Engl., 1988, 27, 661; (b) M. Aresta,
Carbon dioxide reduction and uses as a chemical feedstock, in Activation
of Small Molecules: Organometallic and Bioinorganic Perspectives, ed.
W. B. Tolman, Wiley-VCH, Weinheim, 2006, pp. 1–35;
1
0 W. H. Bernskoetter and B. T. Tyler, Organometallics, 2011, 30, 520.
1 R. R. Schrock, L. G. Sturgeoff and P. R. Sharp, Inorg. Chem., 1983, 22,
801.
1
1
1
1
2
2 A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and
F. J. Timmers, Organometallics, 1996, 15, 1518.
3 J. Sandström, Dynamic NMR Spectroscopy, Academic Press, New York,
982.
4 The [P(OMe)
tively be named [P(OMe)
1
2
3
3
3
]
4
W(H)(CO
2
CHvCH
2
-κ -C,C,O) species may alterna-
1 2
3
]
4
W(H)(CO CHvCH -κ -O-η -C,C). The
2 2
former listing is used here for ease in comparing the two isomeric
products in subsequent discussions.
(c) E. A. Quadrelli, G. Centi, J.-L. Duplan and S. Perathoner,
15 F. P. Pruchnik, Organometallic Chemistry of the Transition Elements,
ChemSusChem, 2011, 4, 1194.
(a) P. Braunstein, D. Matt and D. Nobel, Chem. Rev., 1988, 88, 747;
Plenum Press, New York, 1990.
1
1
6 See ESI.†
(
(
b) T. Sakakura, J.-C. Choi and H. Yasuda, Chem. Rev., 2007, 107, 2365;
c) M. Aresta and A. Dibenedetto, Industrial utilization of carbon
7 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordi-
nation Compounds, Wiley, New York, 4th edn, 1986, pp. 231–233.
8 For updated Tolman cone angle values see: (a) D. White and N. Coville,
Adv. Organomet. Chem., 1994, 36, 95; (b) L. Stahl, W. Trakarnpruk,
J. W. Freeman, A. M. Arif and R. D. Ernst, Inorg. Chem., 1995, 34,
dioxide, in Developments and Innovation in Carbon Dioxide Capture
and Storage Technology, ed. M. M. Maroto-Valer, Woodhead, Cambridge,
1
2
010, pp. 377–410.
4
5
M. Aresta and A. Dibenedetto, Dalton Trans., 2007, 2975; M. Aresta and
A. Dibenedetto, Catal. Today, 2004, 98, 455; Y. Patil, P. J. Tambade,
S. R. Jagtap and B. M. Bhanage, Front. Chem. Eng. China, 2009, 4, 213;
M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann and F. E. Kuhn,
Angew. Chem., Int. Ed., 2011, 50, 8510.
1810.
1
2
9 U. Koelle, B.-S. Kang and U. Thewalt, Organometallics, 1992, 11, 2893.
0 While the identity of all tungsten products in the mixture cannot be
confirmed do to the inability to separate them, it is presumed based on
the diamagnetism and the observation of metal hydrides that these are
primarily W(II) and/or W(IV) species.
(a) H. Hoberg and D. Schaefer, J. Organomet. Chem., 1983, 251, c51;
(b) R. Alvarez, E. Carmona, D. J. Cole-Hamilton, A. Galindo,
10768 | Dalton Trans., 2012, 41, 10763–10768
This journal is © The Royal Society of Chemistry 2012