Journal of the American Chemical Society
Page 4 of 5
Synthesis of the C1 epimer of xishacorene B (7) was also
realized using the same sequence but starting with bicycle
43, the epimer of 36 (Scheme 1B).
L. D.; Williams, D. E.; Andersen, R. J.; Jancar, S.; Berlinck,
R. G. S.; Sarpong, R. Nat. Chem. 2018, NCHEM-
17102265B.
4 Bermejo, F. A.; Mateos, A. F.; Escribano, A. M.; Lago,
R. M.; Burón, L. M.; López, M. R.; González, R. R. Tetra-
hedron 2006, 62, 8933.
1
2
3
4
5
6
7
8
In conclusion, we have demonstrated the utility of a C–C
activation/cross-coupling sequence for the construction of
complex molecular frameworks. Specifically, carvone can
be converted in two steps to a hydroxylated pinene deriva-
tive that sets the stage for a key cross-coupling. A Pd-cata-
lyzed cyclobutanol C–C cleavage/coupling with vinyl hal-
ides followed by radical-mediated C–C bond construction
provided rapid access to a variety of [3.3.1] bicycles. Using
this approach, the first total synthesis of the marine diterpene
xishacorene B has been achieved in 10 steps from carvone
without using any protecting groups. Future studies will fo-
cus on applying this strategy to the synthesis of xishacorene
congeners and their derivatives as well as the investigation
of their bioactivity.
5
Ye, F.; Zhu, Z.-D.; Chen, J.-S.; Li, J.; Gu, Y.-C.; Zhu,
W.-L.; Li, X.-W.; Guo, Y.-W. Org. Lett. 2017, 19, 4183.
6 Original contribution: Wipf, P.; Lim, S. Angew. Chem.
Int. Ed. 1993, 32, 1068. Procedure used from: Schaubach,
S.; Gebauer, K.; Ungeheuer, F.; Hoffmeister, L.; Ilg, M. K.;
Wirtz, C.; Fürstner, A. Chem. Eur. J. 2016, 22, 8494.
7 a) Matsumura, S.; Maeda, Y.; Nishimura, T.; Uemura, S.
J. Am. Chem. Soc. 2003, 125, 8862. b) Nishimura, T.; Matsu-
mura, S.; Maeda, Y.; Uemura, S. Tetrahedron Lett. 2002, 43,
3037. c) Nishimura, T.; Matsumura, S.; Maeda, Y.; Uemura,
S. Chem. Commun. 2002, 50.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
8
Competing b-hydride elimination has been observed to
varying extent at elevated temperatures.
ASSOCIATED CONTENT
9 Shiraga, Y.; Okano, K.; Akira, T.; Fukaya, C.; Yoko-
yama, K.; Tanaka, S.; Fukui, H.; Tabata, M. Tetrahedron
1988, 44, 4703.
Supporting Information.
10 a) Lo, J. C.; Yabe, Y.; Baran, P. S. J. Am. Chem. Soc.
2014, 136, 1304. b) Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C.-M.;
Baran, P. S. Nature 2014, 516, 343.
The Supporting Information is available free of charge on
11
Obradors, C.; Martinez, R. M.; Shenvi, R. A. J. Am.
Experimental detail and spectroscopic data.
Chem. Soc. 2016, 138, 4962.
12 a) George, D. T.; Kuenstner, E. J.; Pronin, S. V. J. Am.
Chem. Soc. 2015, 137, 15410. b) Xu, G.; Elkin, M.; Tantillo,
D.; Newhouse, T.; Maimone, T. Angew. Chem. Int. Ed.
2017, 56, 12498.
AUTHOR INFORMATION
Corresponding Author
*rsarpong@berkeley.edu
13
Specifically, Fe(acac)3, Co(acac)3, Co(dmp)2,
Notes
Mn(acac)3 and the Co-complex used in Ref. 12b were inves-
tigated as catalysts for this process.
The authors declare no competing financial interest.
14
a) Tabuchi, T.; Urabe, D.; Inoue, M. J. Org. Chem.
ACKNOWLEDGMENTS
2016, 81, 10204. b) Hagiwara, K.; Tabuchi, T.; Urabe, D.;
This work was supported by the National Science Foun-
dation (NSF, CHE-1566430 to R.S.). The Swiss National
Science Foundation is kindly acknowledged for an Early
Postdoc. Mobility Fellowship to support I. K.
(P2BSP2_168732). Aduro Biotech is kindly acknowledged
for a Postdoc Fellowship for A. R. R. Dr. Marcus Blümel is
kindly acknowledged for generous donations of 5.
Inoue, M. Chem. Sci. 2016, 7, 4372.
15 a) Furst, L.; Narayanam, J. M. R.; Stephenson, C. R. J.
Angew. Chem. Int. Ed. 2011, 50, 9655. b) Schnermann, M.
J.; Overman, L. E. Angew. Chem. Int. Ed. 2012, 51, 9576.
16 The configuration of the secondary hydroxyl at C12 in
8 was determined by NOE-experiments.
17 Scheffold, R.; Saladin, E. Angew. Chem. Int. Ed. 1972,
11, 229.
18 Holtsclaw, J.; Koreeda, M. Org. Lett. 2004, 6, 3719.
19 For a review on oxetanes in synthesis see: a) Bull, J. A.;
Croft, R. A.; Davis, O. A.; Doran, R.; Morgan, K. F. Chem.
Rev. 2016, 116, 12150. b) Mahal, A. Eur. J. Chem. 2015, 6,
357.
REFERENCES
1 For a review on terpene synthesis see: Maimone, T. J.;
Baran, P. S. Nat. Chem. Biol. 2007, 3, 396.
2 For a review see: Brill, Z. G.; Condakes, M. L.; Ting, C.
P.; Maimone, T. J. Chem. Rev. 2017, 117, 11753.
20 For examples of oxetane formation from iodides see: a)
Sevrin, M.; Krief, A. Tetrahedron Lett. 1980, 21, 585. b)
Roy, B. G.; Roy, A.; Achari, B.; Mandal, S. B. Tetrahedron
Lett. 2006, 47, 7783.
3 a) Weber, M.; Owens, K.; Masarwa, A.; Sarpong, R. Org.
Lett. 2015, 17, 5432. b) Masarwa, A.; Weber, M.; Sarpong,
R. J. Am. Chem. Soc. 2015, 137, 6327. c) Finkbeiner, P.;
Murai, K.; Röpke, M.; Sarpong, R. J. Am. Chem. Soc. 2017,
139, 11349. d) Kuroda, Y.; Nicacio, K. J.; da Silva, I. A.;
Leger, P. R.; Chang, S.; Gubiani, J. R.; Deflon, V. M.; Na-
gashima, N.;Rode, A.; Blackford, K.; Ferreira, A. G.; Sette,
21 We are grateful to an insightful reviewer for suggesting
this pathway for the formation of 40.
ACS Paragon Plus Environment