JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
furan-containing polymer is lower with respect to the thio-
phene containing copolymer.
13 Q. Shi, H. Fan, Y. Liu, J. Chen, Z. Shuai, W. Hu, Y. Li, X.
Zhan, J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 4875–4885.
3
8
1
4 S. Ando, J. Nishida, E. Fujiwara, H. Tada, Y. Inoue, S.
All switching times and percent optical transmittance differ-
Tokito, Y. Yamashita, Synth. Met. 2006, 156, 327–331.
ences (D%T) at specific wavelengths are listed in Table 1.
15 Y. Liu, Q. Shi, H. Dong, J. Tan, W. Hu, X. Zhan, Org. Elec-
tron. 2012, 13, 2372–2378.
1
6 S. Ando, J. Nishida, Y. Inoue, S. Tokito, Y. Yamashita, J.
CONCLUSIONS
Mater. Chem. 2004, 14, 1787–1790.
A new series of alternating DA conjugated copolymers were
synthesized containing benzotriazole and thiazolothiazole
unit in the main chain via Stille coupling polymerization by
altering the thiophene and furan moieties. Electrochemical
and electrochromic properties of the copolymers were
reported. They showed low oxidation potentials and low
optical band-gap values. With the help of the spectroelectro-
chemistry technique, we defined the redox affected color
change of the polymer films. Copolymers showed multichro-
mic properties in a small potential range. It is known that
consequential variation in electrochromic performance can
be rationalized with small structural modifications in poly-
mer chain. As having suitable energy levels and multichromic
properties, electrochromic and solar cell application of a
branched chain-introduced BTzTh derivative is an issue in
our ongoing research.
17 S. Ando, D. Kumaki, J. Nishida, H. Tada, Y. Inoue, S. Tokito,
Y. Yamashita, J. Mater. Chem. 2007, 17, 553–558.
1
8 L. Yan, Y. Zhao, X. Wang, X. Z. Wang, W. Y. Wong, Y. Liu,
W. Wu, Q. Xiao, G. Wang, X. Zhou, W. Zeng, C. Li, X. Wang, H.
Wu, Macromol. Rapid Commun. 2012, 33, 603–609.
1
9 I. Osaka, G. Sauv eꢀ , R. Zhang, T. Kowalewski, R. D.
McCullough, Adv. Mater. 2007, 19, 4160–4165.
0 I. Osaka, R. Zhang, J. Liu, D. M. Smilgies, T. Kowalewski, R.
D. McCullough, Chem. Mater. 2010, 22, 4191–4196.
1 T. W. Lee, N. S. Kang, J. W. Yu, M. H. Hoang, K. H. Kim, J.
I. Jin, D. H. Choi, J. Polym. Sci. Part A: Polym. Chem. 2010, 48,
2
2
5
921–5929.
2
2 M. Mamada, J. Nishida, D. Kumaki, S. Tokito, Y. Yamashita,
Chem. Mater. 2007, 19, 5404–5409.
2
3 Q. Shi, H. Fan, Y. Liu, W. Hu, Y. Li, X. Zhan, J. Phys. Chem.
C 2010, 114, 16843–16848.
24 P. Dutta, W. Yang, H. Park, M. Baek, Y. Lee, S. H. Lee, Synth.
Met. 2011, 161, 1582–1589.
2
5 P. Dutta, W. Yang, S. H. Eom, S. H. Lee, Org. Electron. 2012,
ACKNOWLEDGMENTS
13, 273–282.
2
6 Q. Shi, P. Cheng, Y. Li, X. Zhan, Adv. Energy Mater. 2012, 2,
The authors thanks for funding support to METU-BAP 2013
and Gazi University BAP.
6
3–67.
2
7 M. Zhang, X. Guo, Y. Li, Adv. Energy Mater. 2011, 1, 557–
5
60.
REFERENCES AND NOTES
2
8 S. Subramaniyan, H. Xin, F. S. Kim, S. Shoaee, J. R.
1
H. Shirakawa, E. Louis, A. G. Macdiarmid. C. Chiang, A. J.
Heeger, J. Chem. Soc. Chem. Commun. 1977, 474, 578–580.
A. L. Dyer, E. J. Thompson, J. R. Reynolds, Apl. Mater. Inter-
faces 2011, 3, 1787–1795.
Durrant, S. A. Jenekhe, Adv. Energy Mater. 2011, 1, 854–860.
9 I. H. Jung, J. Yu, E. Jeong, J. Kim, S. Kwon, H. Kong,
K. Lee, H. Y. Woo, H. K. Shim, Chem. Eur. J. 2010, 16, 3743–
2
2
3
752.
3
2
J. K. Politis, J. C. Nemes and M. D. Curtis, J. Am. Chem. Soc.
001, 123, 2537–2547.
3
0 S. K. Lee, J. M. Cho, Y. Goo, W. S. Shin, J. C. Lee, W. H.
Lee, I. N. Kang, H. K. Shim, S. J. Moon, Chem. Commun. 2011,
47, 1791–1793.
4
A. Gandini, Macromolecules 2008, 41, 9491–9952.
5
J. Binder and R. T. Raines, J. Am. Chem. Soc. 2009, 131,
31 M. Zhang, X. Guo, X. Wang, H. Wang, Y. Li, Chem. Mater.
2011, 23, 4264–4270.
1979–1985.
6
O. Gidron, A. Dadvand, Y. Sheynin, M. Bendikov, D. F.
32 Y. Lin, H. Fan, Y. Li, X. Zhan, Adv. Mater. 2012, 24, 3087–
Perepichka, Chem. Commun. 2011, 47, 1976–1978.
M. J. Robb, S. Y. Ku, F. G. Brunetti, C. J. Hawker, J. Polym.
Sci. Part A: Polym. Chem. 2013, 51, 1263–1271.
3106.
7
33 A. Balan, D. Baran, L. Toppare, J. Mater. Chem. 2010, 20,
9861–9866.
8
2
A. H. Al-Dujaili, A. T. Atto, A. M. Al-Kurde, Eur. Polym. J.
001, 37, 927–932.
34 W. N. Hansen, G. J. Hansen, Phys. Rev. A 1987, 36, 1396–
1402.
9
J. W. Slater, P. J. Steel, Tetrahedron Lett. 2006, 47, 6941–
35 G. Zotti, G. Schiavon, S. Zecchin, Synth. Met. 1995, 72, 275–
6943.
281.
1
1
0 R. Ketcham, S. Mah, J. Med. Chem. 1971, 14, 743–747.
36 P. Pati, S. Das, S. S. Zade, J. Polym. Sci. Part A: Polym.
Chem. 2012, 50, 3996–4003.
1 I. H. Jung, Y. K. Jung, J. Lee, J. H. Park, H. Y. Woo, J. I. Lee,
H. Y. Chu, H. K. Shim, J. Polym. Sci. Part A: Polym. Chem.
37 J. Seixas de Melo, F. Elisei, C. Gartner, G. G. Aloisi, R. S.
Becker, J. Phys. Chem. A 2000, 104, 6907–6911.
2008, 46, 7148–7161.
12 J. Y. Jung, S. J. Han, J. Chun, C. Lee, J. Yoon, Dyes Pig-
38 J. Padilla, T. F. Otero, J. Solid State Electrochem. 2007, 11,
ments 2012, 94, 423–426.
1697–1703.
3
906
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2013, 51, 3901–3906