8326
The sulfide-substituted lactam 3a reacted with Grignard reagent, organolithium reagents and
hydride reducing agents to give the double addition products 5a–d (entries 1–4). Decreasing the
amount of the nucleophile only resulted in lower yields of 5a–d. Apparently, the monoaddition
intermediate readily undergoes an elimination to form an iminium ion which reacts with a
second nucleophile. The lactam 3a reacted with organocopper reagents to give the substitution
products 6a–b (entries 5–6). Attempted reactions of 3a with weaker nucleophiles (NaN3, NaCN
or Et2NH) led only to recovered starting material. The sulfone-substituted lactam 4 also yielded
the double addition product 5e with Grignard reagent (entry 7), but gave the substitution
products 6c–e with sodium azide, sodium cyanide and dimethyl malonate anion, respectively
(entries 8–10). Thus, the phenylsulfonyl group in 4 activates the nucleophilic addition and is also
a much better leaving group than the phenylthio group in 3a. Reactions of 4 with amines or
other bases led to the elimination product 7 (entry 11), which should be useful for reacting with
various dienes and dienophiles.9 Presumably, 7 was formed from 4 via a series of double bond
isomerization followed by elimination of the sulfone group.
In summary, we have carried out the first aza-Diels–Alder reactions of arylsulfonyl iso-
cyanates with thio-substituted 1,3-dienes via the 3-sulfolene precursors 1 to give the cyclized
products 3 with complete control of regio- and chemoselectivity. The cyclized products 3a and
4 underwent further interesting reactions with nucleophiles and bases to give useful heterocyclic
compounds.
Acknowledgements
Financial support of this work by the National Science Council of the Republic of China
(NSC 88-2113-M-030-005) is gratefully acknowledged.
References
1. (a) Boger, D. L.; Weinreb, S. M. Hetero Diels–Alder Methodology in Organic Synthesis; Academic Press: Orlando,
1987. (b) Boger, D. L. Chem. Rev. 1986, 86, 781–793. (c) Weinreb, S. M.; Staib, R. R. Tetrahedron 1982, 38,
3087–3128. (d) Weinreb, S. M.; Levin, J. I. Heterocycles 1979, 12, 949–975.
2. Weinreb, S. M. Acc. Chem. Res. 1985, 18, 16–21.
3. (a) Loven, R. P.; Speckamp, W. N.; Zunnebeld, W. A. Tetrahedron 1975, 31, 1717–1721. (b) Sisko, J.; Weinreb,
S. M. Tetrahedron Lett. 1989, 30, 3037–3040. (c) Birkinshaw, T. N.; Tabor, A. B.; Holmes, A. B.; Kaye, P.;
Mayne, P. M.; Raithby, P. R. J. Chem. Soc., Chem. Commun. 1988, 1599–1601 and references cited therein.
4. (a) Ulrich, H. Chem. Rev. 1965, 65, 369–376. (b) Arbuzov, B. A.; Zobova, N. N. Synthesis 1974, 461–476.
5. (a) Chou, T. S.; Tso, H. H. Org. Prep. Proc. Int. 1989, 21, 259–296. (b) Chou, T. S.; Chou, S. S. P. J. Chin. Chem.
Soc. 1992, 39, 625–633.
6. (a) Chou, S. S. P.; Liou, S. Y.; Tsai, C. Y.; Wang, A. J. J. Org. Chem. 1987, 52, 4468–4471. (b) Chou, S. S. P.;
Tsai, C. Y.; Sun, C. M. J. Chin. Chem. Soc. 1989, 36, 149–152. (c) Chou, S. S. P.; Sun, C. M.; Wey, S. J. Synth.
Commun. 1989, 19, 1593–1602. (d) Chou, S. S. P.; Sun, D. J; Tai, H. P. J. Chin. Chem. Soc. 1995, 42, 809–814.
(e) Chou, S. S. P.; Liang, P. W. J. Chin. Chem. Soc. 2000, 47, 83–90 and references cited therein.
7. (a) Hopkins, P. B.; Fuchs, P. L. J. Org. Chem. 1978, 43, 1208–1217. (b) Chou, T. S.; Lee, S. J.; Peng, M. L.; Sun,
D. J.; Chou, S. S. P. J. Org. Chem. 1988, 53, 3027–3031.
1
8. The regiochemistry of the cycloaddition was unequivocally determined by spectroscopic methods. For example, H
NMR spectral data of 3a: l 2.38 (3 H, s), 2.67 (2 H, t, J=6.3 Hz), 4.06 (2 H, t, J=6.3 Hz), 5.13 (1 H, s), 7.27
(2 H, d, J=8.2 Hz), 7.38–7.45 (5 H, m), 7.88 (2 H, d, J=8.2 Hz).
9. Afarinkia, K.; Mahmood, F. Tetrahedron Lett. 1998, 39, 493–496 and references cited therein.