Figure 1. (a) Molecular structures of L-BHisPA and (b) D-BHisPA.
into this scaffold can be designed to afford a chiral molecular
arrangement. Histidine has the advantage of forming an
lecular conformation, the crystal structure of D-BHisPA
derived from D-histidine methyl ester was investigated. It
should be noted that a right-handed helical conformation was
formed in the crystal structure of D-BHisPA.7 Similar
intramolecular hydrogen bondings between NH (amide) and
N (pyridine) (NH‚‚‚N, 2.291 Å) were observed in this helical
structure (Figure 1b). The molecular structures of L-BHisPA
and D-BHisPA are in a good mirror-image relationship,
4
ordered structure on the basis of the chiral center and an
additional hydrogen bonding site of the imidazolyl group.
From these points of view, we herein report that the chiral
helicity of N,N′-bis{1-methoxycarbonyl-2-(4-imidazolyl)-
ethyl}-2,6-pyridinedicarboxamide induces a self-assembled
helix in the crystal packing, which provides a key procedure
to construct highly ordered structures by using amino acids.
N,N′-Bis{(S)-(+)-1-methoxycarbonyl-2-(4-imidazolyl)-
ethyl}-2,6-pyridinedicarboxamide (L-BHisPA) was synthe-
sized from 2,6-pyridinedicarboxylic acid dichloride and
8
indicating conformational enantiomers. The propensity to
form the chiral helicity appears to be controlled by the
configuration of the histidyl R-carbon atoms.
5
L-histidine methyl ester. The single-crystal X-ray structure
determination of L-BHisPA confirmed a left-handed helical
conformation through chirality of the histidyl moieties and
intramolecular hydrogen bonding between NH (amide) and
N (pyridine) (NH‚‚‚N, 2.230 Å) to give five-membered
6
hydrogen-bonded rings as depicted in Figure 1a. To
elucidate the capability of the 2,6-pyridinedicarboxamide
bearing podand histidyl moieties to induce the chiral mo-
(4) (a) Yu, Q.; Baroni, T. E.; Liable-Sands, L.; Yap, G. P. A.; Rheingold,
A. L.; Borovik, A. S. Chem. Commun. 1999, 1467. (b) Karle, I. L.;
Ranganathan, D.; Kurur, S. J. Am. Chem. Soc. 1999, 121, 7156.
(
5) The selected data are as follows. L-BHisPA: mp 198-199 °C
-1 1
(
uncorrected); IR (KBr) 3394, 3126, 1743, 1666 cm ; H NMR (300 MHz,
CD3OD) δ 8.23 (d, 2H, J ) 7.5 Hz), 8.12 (t, 1H, J ) 7.5 Hz), 7.57 (s, 2H),
6
4
.93 (s, 2H), 4.93 (dd, 2H, J ) 8.7, 5.1 Hz), 3.76 (s, 6H), 3.36-3.19 (m,
+
H); EI-MS m/z 469 (M ). Anal. Calcd for C21H23N7O6‚H2O: C, 51.74;
H, 5.17; N, 20.11. Found: C, 51.57; H, 5.01; N, 20.16. D-BHisPA: mp
-
1 1
1
98-199 °C (uncorrected); IR (KBr) 3394, 3126, 1743, 1666 cm ; H
NMR (300 MHz, CD3OD) δ 8.23 (d, 2H, J ) 7.5 Hz), 8.12 (t, 1H, J ) 7.5
Hz), 7.57 (s, 2H), 6.93 (s, 2H), 4.93 (dd, 2H, J ) 8.7, 5.1 Hz), 3.76 (s,
+
6
H), 3.36-3.19 (m, 4H); EI-MS m/z 469 (M ). Anal. Calcd for C21H23N7O6‚
H2O: C, 51.74; H, 5.17; N, 20.11. Found: C, 51.51; H, 4.78; N, 19.83.
Another interesting feature is that each molecule of
L-BHisPA is connected by continuous intermolecular hy-
drogen bonds to give a left-handed helix (M-form) as shown
L-HisPA: mp 174-175 °C (uncorrected); IR (KBr) 3348, 3116, 1728, 1658
-
1 1
cm ; H NMR (300 MHz, CD3OD) δ 8.62 (ddd, 1H, J ) 5.4, 1.8, 0.9
Hz), 8.05 (ddd, 1H, J ) 7.5, 1.5, 0.9 Hz), 7.94 (td, 1H, J ) 7.5, 1.8 Hz),
7
1
.63 (s, 1H), 7.54 (ddd, 1H, J ) 7.5, 5.4, 1.5 Hz), 6.89 (s, 1H), 4.91 (dd,
H, J ) 7.2, 5.4 Hz), 3.74 (s, 3H), 3.25-3.21 (m, 2H); EI-MS m/z 274
+
(M ). Anal. Calcd for C13H14N4O3: C, 56.93; H, 5.14; N, 20.43. Found:
(td, 1H, J ) 7.5, 1.8 Hz), 7.63 (s, 1H), 7.54 (ddd, 1H, J ) 7.5, 5.4, 1.5
Hz), 6.89 (s, 1H), 4.91 (dd, 1H, J ) 7.2, 5.4 Hz), 3.74 (s, 3H), 3.25-3.21
C, 56.56; H, 5.21; N, 20.26. D-HisPA: mp 174-175 °C (uncorrected); IR
-
1
1
+
(
(
KBr) 3348, 3116, 1728, 1658 cm ; H NMR (300 MHz, CD3OD) δ 8.62
ddd, 1H, J ) 5.4, 1.8, 0.9 Hz), 8.05 (ddd, 1H, J ) 7.5, 1.5, 0.9 Hz), 7.94
(m, 2H); EI-MS m/z 274 (M ). Anal. Calcd for C13H14N4O3: C, 56.93; H,
5.14; N, 20.43. Found: C, 56.89; H, 5.06; N, 20.38.
1460
Org. Lett., Vol. 3, No. 10, 2001