A. E. Taggi et al. / Tetrahedron 58 (2002) 8351–8356
8355
(c) Korbel, G. A.; Lalic, G.; Shair, M. D. J. Am. Chem. Soc.
2001, 123, 361–362. (d) Reetz, M. T.; Becker, M. H.; Klein,
H.-W.; Stockigt, D. Angew. Chem., Int. Ed. 1999, 38,
1758–1761. (e) Guo, J.; Wu, J.; Siuzdak, G.; Finn, M. G.
Angew. Chem., Int. Ed. 1999, 38, 1755–1758. For general
reviews see: (f) Reetz, M. T. Angew. Chem., Int. Ed. 2001, 40,
284–310. (g) Jandeleit, B.; Schaefer, D. J.; Powers, T. S.;
Turner, H. W.; Weinberg, W. H. Angew. Chem., Int. Ed. 1999,
38, 2494–2532. (h) Kuntz, K. W.; Snapper, M. L.; Hoveyda,
A. H. Curr. Opin. Chem. Biol. 1999, 3, 313–319. (i) Francis,
M. B.; Jamison, T. F.; Jacobsen, E. N. Curr. Opin. Chem. Biol.
1998, 2, 422–428.
calculations on nucleophilic catalyst–ketene adducts give
insight into the physical reason for the observed sense of
induction observed experimentally with the benzoylquinine
catalyzed b-lactam forming reaction. This model system
was then used to predict the magnitude of stereoselectivity
induced by several chiral nucleophilic catalysts with
different structural motifs. Future studies will expand on
the rational design of novel nucleophilic catalysts.
4. Experimental
2. For a review of recent b-lactam chemistry see: Palomo, C.;
Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Eur. J. Org. Chem.
1999, 12, 3223–3235.
4.1. General procedure for b-lactam 7a using proton
sponge
3. (a) Wilmouth, R. C.; Kassamally, S.; Westwood, N. J.;
Sheppard, R. J.; Claridge, T. D. W.; Aplin, R. T.; Wright, P. A.;
Pritchard, G. J.; Schofield, C. J. Biochem 1999, 38,
7989–7998. (b) Taylor, P.; Anderson, V.; Dowden, J.; Flitsch,
S. L.; Turner, N. J.; Loughran, K.; Walkinshaw, M. D. J. Biol.
Chem. 1999, 274, 24901–24905.
To a solution of benzoylquinine 5a (5.5 mg, 0.0129 mmol)
and proton sponge 6 (31 mg, 0.142 mmol) in toluene (1 mL)
at 2788C was added phenylacetyl chloride 1a (20 mg,
0.129 mmol) in toluene (0.5 mL) immediately followed by
a-imino ester 4 (33 mg, 0.129 mmol) in toluene (0.5 mL).
The reaction was allowed to stir for 5 h as it slowly warmed
to room temperature. The solvent was removed under
reduced pressure and the crude mixture was subjected to
column chromatography (15% EtOAc/hexanes) on a plug of
silica gel to yield 7a (65% yield, 33 mg).
4. Miller, M. J. Tetrahedron 2000, 56. preface.
5. For an extensive review of the use of cinchona alkaloids as
catalysts see: (a) Kacprzak, K.; Gawronski, J. Synthesis 2001,
961–998. For a review on catalysis with organic molecules
see: (b) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2001,
40, 3726–3748.
4.1.1. N-(2R,3R-Diphenyl-2,5,6,7S-tetrahydro-3H-pyr-
rolo[1,2-a]imidazol-7-yl)-benzamide 11. To a pressure
tube was added S-(þ)-2-benzoylamine-4-bromobutanoic
acid (674 mg, 2.36 mmol), (1R,2R)-(2)1,2-dipenylethyl-
enediamine (500 mg, 2.36 mmol) and 0.5 mL of toluene and
the mixture heated at 1408C for 3 h. The reaction was cooled
and the solvent removed under reduced pressure. The
resulting oil was chromatographed on silica gel using (20%
EtOAc/EtOH) and the resulting product recrystallized from
acetone to afforded 206 mg (23%) of the desired product as
a white solid. Mp 142–1458C; 1H NMR ((CD3)2SO) d 8.58
(d, 1H), 7.87 (d, 2H), 7.54–7.40 (m, 4H), 7.32–7.14 (m,
8H), 4.92 (m, 1H), 4.55 (s, 2H), 3.58 (t, 2H), 2.20–2.11 (m,
1H), 2.08–1.97 (m, 1H) ppm; 13C NMR ((CD3)2SO)
168.79, 167.99, 146.02, 135.97, 132.75, 129.98, 129.72,
128.98, 128.76, 127.75, 59.38, 47.64, 37.28; IR (KBr plate)
3360, 2984, 1680, 1657, 1520, 1420. Anal. calcd for
C25H23N3O, C, 78.71; H, 6.08; N, 11.02. Found C, 78.32; H,
6.20; N, 11.35.
6. (a) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris,
D.; Lectka, T. J. Am. Chem. Soc. 2002, 124, 6626–6635.
(b) France, S.; Wack, H.; Hafez, A. M.; Taggi, A. E.; Witsel,
D.; Lectka, T. Org. Lett. 2002, 4, 1603–1605. (c) Taggi, A. E.;
Wack, H.; Hafez, A. M.; France, S.; Lectka, T. Org. Lett. 2002,
4, 627–629. (d) Hafez, A. M.; Taggi, A. E.; Dudding, T.;
Lectka, T. J. Am. Chem. Soc. 2001, 123, 10853–10859.
(e) Hafez, A. M.; Taggi, A. E.; Wack, H.; Drury, III., W. J.;
Lectka, T. Org. Lett. 2000, 2, 3963–3965. (f) Taggi, A. E.;
Hafez, A. M.; Wack, H.; Young, B.; Drury, III., W. J.; Lectka,
T. J. Am. Chem. Soc. 2000, 122, 7831–7832.
7. Imine 4 was first popularized in work by: Tschaen, D. H.;
Turos, E.; Weinreb, S. M. J. Org. Chem. 1984, 49,
5058–5064.
8. We have also used N-acyl imino esters to form b-lactams as
intermediates in the synthesis of substituted aspartic acids:
Dudding, T.; Hafez, A. M.; Taggi, A. E.; Wagerle, T. R.;
Lectka, T. Org. Lett. 2002, 4, 387–390.
9. We have previously used imine 4 for the catalytic asymmetric
synthesis of amino acids: Ferraris, D.; Young, B.; Cox, C.;
Dudding, T.; Drury, III., W. J.; Ryzhkov, L.; Taggi, A. E.;
Lectka, T. J. Am. Chem. Soc. 2002, 124, 67–77.
Acknowledgements
T. L. thanks the NIH (GM54348), Merck, Eli Lilly, the NSF
Career Program for support, the Dreyfus Foundation for a
Teacher-Scholar Award, and the Alfred P. Sloan Foundation
for a Fellowship. A. T. thanks the Organic Division of the
American Chemical Society for a Graduate Fellowship
sponsored by Organic Reactions, Inc. (2001–2002).
10. Macromodel V. 7.0 copyright Columbia University 1986–
1998, Schrodinger Inc. 1999. See: Mohamadi, F.; Richards,
N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.;
Chang, G.; Hendricksen, T.; Still, W. C. J. Comput. Chem.
1990, 11, 440–467.
11. It is possible that acid chloride is deprotonated by BQ or PS
(without the initial formation of an acylammonium salt)
forming free ketene that can then react with the catalyst to
form the zwitterionic intermediate (Scheme 1). IR experiments
did not show the formation of free ketene, making this scenario
seem unlikely, but not impossible. See Ref. 6a as well as:
(a) Brady, W. T.; Scherubel, G. A. J. Org. Chem. 1974, 39,
3790–3791. (b) Brady, W. T.; Scherubel, G. A. J. Am. Chem.
References
1. (a) Jarvo, E. R.; Evans, C. A.; Copeland, G. T.; Miller, S. J.
J. Org. Chem. 2001, 66, 5522–5527. (b) Copeland, G. T.;
Miller, S. J. J. Am. Chem. Soc. 2001, 123, 6496–6502.