Vol. 29, No. 5 (2017)
Synthesis of Ruthenium Polypyridyl Complexes Containing 1,6-bis(Benzylidene)hexanediamine as Ligand 981
(
b) M.K. Nazeeruddin, C. Klein, P. Liska and M. Grätzel, Coord. Chem.
(
>C=NH) was found to appear at δ 152 ppm connected to the
Rev., 249, 1460 (2005);
https://doi.org/10.1016/j.ccr.2005.03.025.
azomethine proton at δ 9.80 ppm [35]. The peak at δ 44 ppm
for the DMSO carbon was found connected to the DMSO
methyl proton at δ 2.9 ppm, also in the uncoordinated DMSO
molecule a peak of carbon at δ 36 ppm was found connected
to DMSO methyl proton at δ 2.3 ppm.
(c) F.T. Kong, S.Y. Dai and K.J. Wang, Chin. J. Chem., 25, 168 (2007);
https://doi.org/10.1002/cjoc.200790034.
6
.
(a) J.D. Badjic, C.M. Ronconi, J.F. Stoddart, V. Balzani, S. Silvi and
A. Credi, J. Am. Chem. Soc., 128, 1489 (2006);
https://doi.org/10.1021/ja0543954.
Conclusion
(b) A. Petitjean, F. Puntoriero, S. Campagna, A. Juris and J.M. Lehn,
Eur. J. Inorg. Chem., 3878 (2006);
https://doi.org/10.1002/ejic.200600466.
(c) V. Balzani, G. Bergamini, F. Marchioni and P. Ceroni, Coord. Chem.
Rev., 250, 1254 (2006);
https://doi.org/10.1016/j.ccr.2005.11.013.
Based on the charactization studies of the complexes, the
tantative structures are shown in Fig. 5. All complexes and
ligand were screened against bacteria but the ligand was found
less potent than the synthesized complexes. All the screened
(
4
d) S. Nitahara, N. Terasaki, T. Akiyama and S.Yamada, Thin Solid Films,
99, 354 (2006);
complexes,A1-
A ,inhibit the growth of bacteria and are found
8
more potent than their precursors. This was probably due to
the enhanced lipophilic nature of the complexes, which lead to
the breakdown of permeability barriers of the cell and thus retard
the normal cell process in bacteria.
https://doi.org/10.1016/j.tsf.2005.07.014.
(a) V. Balzani, A. Credi, S. Silvi and M. Venturi, Chem. Soc. Rev., 35,
7
.
1
135 (2006);
https://doi.org/10.1039/b517102b.
b) V. Balzani, M. Clemente-Leon, A. Credi, B. Ferrer, M. Venturi,
A.H. Flood and J.F. Stoddart, Proc. Natl. Acad. Sci. USA, 103, 1178
2006);
https://doi.org/10.1073/pnas.0509011103.
c) V. Balzani, M. Venturi and A. Credi, In Molecular Devices and
(
ACKNOWLEDGEMENTS
(
The authors are thankful to The Principal, Govt. Model
Science College, Jabalpur and Head, Department of Chemistry,
Govt. Model Science College, Jabalpur for providing laboratory
facilities. The authors are also indebted to Dr. K.K.Verma and
Dr. K.K. Mishra, Retired Professors, Department of Chemistry,
RDVV, Jabalpur, India for their help rendered in IR and UV
spectra. Thanks are also due to SAIF, CDRI Lucknow, India
(
Machines-A Journey in the Nano World, Wiley-VCH: Weinheim,
Germany (2003).
E. Corral, A.C.G. Hotze, D.M. Tooke, A.L. Spek and J. Reedijk, Inorg.
Chim. Acta, 359, 830 (2006);
8
.
https://doi.org/10.1016/j.ica.2005.05.017.
9. Z. Ganbaatar, S.A. Osadchii, É.É. Shul’ts, T.G. Tolstikova, M.P. Dolgikh
and G.A. Tolstikov, Pharm. Chem. J., 36, 478 (2002);
https://doi.org/10.1023/A:1021892621783.
13
1
2
for { C- H} D NMR (HETCOR) spectral analysis, FAB mass
and elemental analysis. The authors are also thankful to MPCOST,
Bhopal, (M.P.), India for providing financial Assistance.
1
0. D. Mlynarcik, F. Devinsky and I. Lacko, Folia Microbiol., 24, 188 (1979);
https://doi.org/10.1007/BF02927306.
11. I.P. Evans, A. Spencer and G. Wilkinson, J. Chem. Soc., Dalton Trans.,
04 (1973);
2
https://doi.org/10.1039/DT9730000204.
REFERENCES
1
2. E. Alessio, G. Mestroni, G. Nardin, W.M. Attia, M. Calligaris, G. Sava
and S. Zorzet, Inorg. Chem., 27, 4099 (1988);
https://doi.org/10.1021/ic00296a006.
1
2
3
.
.
.
F. Schramm, R. Chandrasekar, T.A. Zevaco, M. Rudolph, H. Görls, W.
Poppitz and M. Ruben, Eur. J. Inorg. Chem., 53 (2009);
https://doi.org/10.1002/ejic.200800628.
V. Balzani, A. Juris, M. Venturi, S. Campagna and S. Serroni, Chem.
Rev., 96, 759 (1996);
https://doi.org/10.1021/cr941154y.
(a) J.M. Berg, J.L. Tymoczko and L. Stryer, Biochemistry, W.H.
Freeman, New York, vol. 6 (2006).
13. E. Alessio, B. Milani, G. Mestroni, M. Calligaris, P. Faleschini and
W.M. Attia, Inorg. Chim. Acta, 177, 255 (1990);
https://doi.org/10.1016/S0020-1693(00)85984-8.
14. E. Alessio, G. Balducci, M. Calligaris, G. Costa, W.M. Attia and G.
Mestroni, Inorg. Chem., 30, 609 (1991);
https://doi.org/10.1021/ic00004a005.
(
b)A.F. Collings and C, Critchley,Artificial Photosynthesis: From Basic
Biology to IndustrialApplication,Wiley-VCH:Weinheim, Germany, (2005).
c) M. Chen, K.P. Ghiggino, S.H. Thang and G.J. Wilson, Angew. Chem.
15. R. Mehrotra, S.N. Shukla, P. Gaur and A. Dubey, Eur. J. Med. Chem.,
50, 149 (2012);
(
https://doi.org/10.1016/j.ejmech.2012.01.049.
Int. Ed., 44, 4368 (2005);
https://doi.org/10.1002/anie.200462796.
16. R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Identi-
fication of Organic Compouds, John Wiley & Sons, Inc, New York,
pp. 123-131, 219-262 (1991).
(
d) M.K. Nazeeruddin and M. Griaitzel, in eds.: J.A. McCleverty and
T.J. Meyer, Comprehensive Coordination Chemistry II, Elsevier
Amsterdam, vol. 9 (2003).
17. P.S. Kalsi, Spectroscopy of Organic Compounds, NewAge International
Ltd., pp. 206-210, 246-256, 342-350 (2005).
(
e) A. Hagfeldt and M. Gratzel, Acc. Chem. Res., 33, 269 (2000);
https://doi.org/10.1021/ar980112j.
f) C.A. Bignozzi, J.R. Schoonover, F.A. Scandola, in ed.: G.J. Meyer,
Progress in Inorganic Chemistry, Wiley: New York, vol. 44 (1999).
g) L. Hammarstrom, Curr. Opin. Chem. Biol., 7, 666 (2003);
18. J.M. Miller and K. Balasanmugam, Can. J. Chem., 67, 1496 (1989);
https://doi.org/10.1139/v89-228.
19. N.G. Tsierkezos, U. Ritter,A.I. Philippopoulos and D. Schroder, J. Coord.
Chem., 63, 3517 (2010);
(
(
https://doi.org/10.1080/00958972.2010.516362.
https://doi.org/10.1016/j.cbpa.2003.10.002.
20. K.D. Keerthi, B.K. Santra and G.K. Lahiri, Polyhedron, 17, 1387 (1998);
https://doi.org/10.1016/S0277-5387(97)00277-5.
21. S.N. Shukla, P. Gaur, R. Mehrotra, M. Prasad, H. Kaur, M. Prasad and
R.S. Srivastava, J. Coord. Chem., 62, 2556 (2009);
https://doi.org/10.1080/00958970902862628.
22. U.C. Sarma and R.K. Poddar, Polyhedron, 7, 1737 (1988);
https://doi.org/10.1016/S0277-5387(00)80405-2.
24. A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam,
The Netherlands (1984).
4
5
.
.
(a) F. Liu, J.J. Concepcion, J.W. Jurss, T. Cardolaccia, J.L. Templeton
and T.J. Meyer, Inorg. Chem., 47, 1727 (2008);
https://doi.org/10.1021/ic701249s.
(
b) T. Meyer, Nature, 451, 778 (2008);
https://doi.org/10.1038/451778a.
c) S. Rau, B. Schafer, D. Gleich, E. Anders, M. Rudolph, M. Friedrich,
(
H. Gorls, W. Henry and J.G.Vos, Angew. Chem. Int. Ed., 45, 6215 (2006);
https://doi.org/10.1002/anie.200600543.
(a) M.K. Nazeeruddin, S.M. Zakeeruddin, J.J. Lagref, P. Liska, P. Comte,
C. Barolo, G. Viscardi, K. Schenk and M. Graetzel, Coord. Chem. Rev.,
25. S. Dutta and P.K. Bhattacharya, Indian J. Chem., 42A, 262 (2003).
26. R.S. Srivastava, F.R. Fronczek and L.M. Romero, Inorg. Chim. Acta,
357, 2410 (2004);
2
48, 1317 (2004);
https://doi.org/10.1016/j.ccr.2004.03.012.
https://doi.org/10.1016/j.ica.2004.01.026.