boranophosphorothioate 15 (dP 162.5, 161.0)8a,b within 3 h at
rt, and 15 was isolated in good yield (Scheme 2, reaction iii).
In conclusion, nucleoside H-boranophosphonates were syn-
thesized via condensation of the corresponding nucleosides and
H-boranophosphonate derivatives. The mild reaction conditions
and high efficiency of this method are attractive for further
applications to the synthesis of a broad spectrum of H-borano-
phosphonate derivatives. In addition, conversion of the P–H
group of a dinucleoside H-boranophosphonate into a P–S– group
demonstrated that the H-boranophosphonate derivatives are
potential precursors of a variety of boron-containing oligo-
nucleotide analogues. Further studies on the synthesis of nucleoside
H-boranophosphonates and their applications are in progress.
We thank Professor Kazuhiko Saigo (University of Tokyo)
for helpful suggestions. This research was supported by a
Grant-in-Aid for Young Scientists (B) (No. 20750127) from
MEXT Japan (N.O.).
Table 3 Synthesis of nucleoside 30-H-boranophosphonates 12a,b by
30-boranophosphonylation of nucleosides 11a,b
Yield of
12 (%)
Entry 11 BPRO Reagents and conditions
1
a
Thbz
7 (1.2 equiv.), Piv-Cl (1.5 equiv.),
iPr2NEt (3 equiv.), NT (1.5 equiv.),
MeCN, rt, 4 h
7 (1.2 equiv.), Bop-Cl (3 equiv.),
iPr2NEt (6 equiv.), NT (3 equiv.),
MeCN, rt, 1.5 h
7 (1.2 equiv.), Bop-Cl (1.2 equiv.),
Py, rt, 1 h
7 (2 equiv.), Bop-Cl (2 equiv.),
Py, rt, 3 h
41
2
a
Thbz
50
3
4
a
b
Thbz
Th
95
82
Notes and references
1 C. Wilson and A. D. Keefe, Curr. Opin. Chem. Biol., 2006, 10, 607.
2 T. Calogeropoulou, A. Detsi, E. Lekkas and M. Koufaki, Curr.
Top. Med. Chem., 2003, 3, 1467.
3 P. Li, Z. A. Sergueeva, M. Dobrikov and B. R. Shaw, Chem. Rev.,
2007, 107, 4746.
4 (a) I. H. Hall, B. S. Burnham, K. G. Rajendran, S. Y. Chen,
A. Sood, B. F. Spielvogel and B. R. Shaw, Biomed. Pharmacother.,
1993, 47, 79; (b) H. Li, C. Hardin and B. R. Shaw, J. Am. Chem.
Soc., 1996, 118, 6606.
5 (a) A. H. S. Hall, J. Wan, E. E. Shaughnessy, B. R. Shaw and
K. A. Alexander, Nucleic Acids Res., 2004, 32, 5991; (b) A. H.
S. Hall, J. Wan, A. Spesock, Z. Sergueeva, B. R. Shaw and
K. A. Alexander, Nucleic Acids Res., 2006, 34, 2773.
6 B. S. Burnham, Curr. Med. Chem., 2005, 12, 1995.
7 (a) J. Lin and B. R. Shaw, Chem. Commun., 2000, 2115; (b) P. Li
and B. R. Shaw, Org. Lett., 2002, 4, 2009; (c) P. Li and B. R. Shaw,
Chem. Commun., 2002, 2890; (d) J. Baraniak, R. Kaczmarek and
E. Wasilewska, Tetrahedron Lett., 2004, 45, 671; (e) P. Li and
B. R. Shaw, Nucleosides, Nucleotides Nucleic Acids, 2005, 24, 675;
(f) P. Li and B. R. Shaw, J. Org. Chem., 2005, 70, 2171.
8 (a) J. Lin and B. R. Shaw, Chem. Commun., 1999, 1517; (b) J. Lin
and B. R. Shaw, Nucleosides, Nucleotides Nucleic Acids, 2001, 20,
587; (c) J. Lin and B. R. Shaw, Nucleosides, Nucleotides Nucleic
Acids, 2001, 20, 1325.
9 (a) A. Sood, B. R. Shaw and B. F. Spielvogel, J. Am. Chem. Soc.,
1990, 112, 9000; (b) H. A. Brummel and M. H. Caruthers, Tetra-
´
hedron Lett., 2002, 43, 749; (c) H. B. McCuen, M. S. Noe,
A. B. Sierzchala, A. P. Higson and M. H. Caruthers, J. Am. Chem.
Soc., 2006, 128, 8138.
Scheme 2 (i) Synthesis of dithymidine H-boranophosphonates 13a,b,
(ii) 50-O-detritylation of 13b and (iii) conversion of 13a into dithymi-
dine boranophosphorothioate 15 by P–H modification. Reagents and
conditions: (i) N3-benzoyl-30-O-R3-thymidine (0.75 equiv.), Bop-Cl
(2.5 equiv.), 2,2,6,6-tetramethylpiperidine (6 equiv.), MeCN, rt, 1 h;
(ii) 3% dichloroacetic acid in CH2Cl2–Et3SiH (3 : 1, v/v), rt, 1 min;
(iii) S8 (3 equiv.), Et3N (3 equiv.), MeCN, rt, 3 h.
10 (a) J. Zhang, T. Terhorst and M. D. Matteucci, Tetrahedron Lett.,
1997, 38, 4957; (b) A. P. Higson, A. Sierzchala, H. Brummel, Z. Zhao
and M. H. Caruthers, Tetrahedron Lett., 1998, 39, 3899;
(c) D. S. Sergueev and B. R. Shaw, J. Am. Chem. Soc., 1998, 120, 9417.
11 (a) T. Wada, M. Shimizu, N. Oka and K. Saigo, Tetrahedron Lett.,
2002, 43, 4137; (b) M. Shimizu, T. Wada, N. Oka and K. Saigo,
J. Org. Chem., 2004, 69, 5261; (c) M. Shimizu, K. Saigo and
T. Wada, J. Org. Chem., 2006, 71, 4262.
12 (a) T. Imamoto, T. Kusumoto, N. Suzuki and K. Sato, J. Am.
Chem. Soc., 1985, 107, 5301; (b) T. Oshiki and T. Imamoto, J. Am.
Chem. Soc., 1992, 114, 3975; (c) Y. Belabassi, M. I. Antczak,
J. Tellez and J.-L. Montchamp, Tetrahedron, 2008, 64, 9181.
13 (a) H. Brisset, Y. Gourdel, P. Pellon and M. Le Corre, Tetrahedron
Lett., 1993, 34, 4523; (b) M. Shimizu, K. Tamura, T. Wada and
K. Saigo, Tetrahedron Lett., 2004, 45, 371; (c) T. Kawanaka,
M. Shimizu and T. Wada, Tetrahedron Lett., 2007, 48, 1973.
14 L. F. Centofanti, Inorg. Chem., 1973, 12, 1131.
was synthesized as a crude product in a similar manner and treated
with 3% dichloroacetic acid in CDCl3–Et3SiH (1 : 1, v/v)11b,16
for 50-O-detritylation. In contrast to the detritylation of the
H-boranophosphonate monoester 9b by treatment with 80%
AcOH (Table 2, entry 1), which caused the decomposition of the
H-boranophosphonate moiety, the 50-O-DMTr group of 13b was
quantitatively removed without decomposition of the product
(Scheme 2, reaction ii). It indicates that a solid-phase synthesis
of oligonucleoside H-boranophosphonates via condensation and
50-O-detritylation is feasible.
Secondly, the possibility of the P–H modification of the
H-boranophosphonate diester linkage was investigated by
treating the dithymidine H-boranophosphonate 13a with S8 in
the presence of Et3N under anhydrous conditions. A 31P NMR
analysis of the reaction showed that 13a (dP 135.1, 133.7) was
quantitatively converted into the corresponding dithymidine
15 T. Wada, A. Mochizuki, Y. Sato and M. Sekine, Tetrahedron Lett.,
1998, 39, 7123.
16 Z. A. Sergueeva, D. S. Sergueev and B. R. Shaw, Nucleosides,
Nucleotides Nucleic Acids, 2001, 20, 941.
ꢂc
This journal is The Royal Society of Chemistry 2009
2468 | Chem. Commun., 2009, 2466–2468