10.1002/anie.201706964
Angewandte Chemie International Edition
COMMUNICATION
[7]
[8]
a) K. E. Broaders, S. Grandhe, J. M. J. Frechet, J. Am. Chem. Soc. 2011, 133,
756-758; b) J. Noh, B. Kwon, E. Han, M. Park, W. Yang, W. Cho, W. Yoo, G.
Khang, D. Lee, Nat. Commun. 2015, 6, 6907.
a) N. Hulsman, J. P. Medema, C. Bos, A. Jongejan, R. Leurs, M. J. Smit, I. J. P.
de Esch, D. Richel, M. Wijtmans, J. Med. Chem. 2007, 50, 2424-2431; b) H.
Hagen, P. Marzenell, E. Jentzsch, F. Wenz, M. R. Veldwijk, A. Mokhir, J.
Med. Chem. 2012, 55, 924-934.
catalysis of theraNR occurred in tumor not only consuming the
nutrients (glucose and O2) for H2O2 generation, but also releasing QM
for GSH depletion. Thus, theraNR showed synergistic effect to
increase tumor oxidative stress and suppress antioxidative capability of
cancer cells, which achieved complete ablation toward A549 tumors
while causing negligible systemic toxicity. More details for the
antitumor mechanisms of the nanoreactors still need to be studied in
future. The design strategy of theraNR represents a feasible approach
to promote in vivo therapeutic application of NRs for maximizing the
therapeutic efficacy and minimizing the adverse side effect.
[9]
T. Chang, M. S. Lord, B. Bergmann, A. Macmillan, M. H. Stenzel, J. Mater.
Chem. B 2014, 2, 2883-2891.
[10] a) K. J. Zhou, H. M. Liu, S. R. Zhang, X. N. Huang, Y. G. Wang, G. Huang, B.
D. Sumer, J. M. Gao, J. Am. Chem. Soc. 2012, 134, 7803-7811; b) K. J. Zhou,
Y. G. Wang, X. N. Huang, K. Luby-Phelps, B. D. Sumer, J. M. Gao, Angew.
Chem. Int. Ed. 2011, 50, 6109-6114.
[11] P. D. Josephy, T. Eling, R. P. Mason, J. Biol. Chem. 1982, 257, 3669-3675.
[12] T. Einfalt, R. Goers, I. A. Dinu, A. Najer, M. Spulber, O. Onaca-Fischer, C. G.
Palivan, Nano Lett. 2015, 15, 7596-7603.
[13] a) D. Trachootham, J. Alexandre, P. Huang, Nat. Rev. Drug Discovery 2009, 8,
579-591; b) J. Fang, T. Seki, H. Maeda, Adv. Drug Delivery Rev. 2009, 61,
290-302.
Acknowledgements
[14] a) P. Vaupel, Semin. Radiat. Oncol. 2004, 14, 198-206; b) T. Schroeder, H.
Yuan, B. L. Viglianti, C. Peltz, S. Asopa, Z. Vujaskovic, M. W. Dewhirst,
Cancer Res. 2005, 65, 5163-5171.
[15] a) J. J. Li, W. D. Ke, L. Wang, M. M. Huang, W. Yin, P. Zhang, Q. X. Chen, Z.
S. Ge, J. Controlled Release 2016, 225, 64-74; b) H. Maeda, Y. Futkuyasu, S.
Yoshida, M. Fukuda, K. Saeki, H. Matsuno, Y. Yamauchi, K. Yoshida, K.
Hirata, K. Miyamoto, Angew. Chem. Int. Ed. 2004, 43, 2389-2391.
We gratefully acknowledge financial support from National Natural
Scientific Foundation of China (NNSFC) Project (21674104) and the
Fundamental Research Funds for the Central Universities
(WK3450000002).
Keywords: nanoreactors • polymersomes • cancer therapy • enzyme
delivery • membrane permeability
[1]
[2]
a) D. M. Vriezema, M. C. Aragones, J. A. A. W. Elemans, J. J. L. M.
Cornelissen, A. E. Rowan, R. J. M. Nolte, Chem. Rev. 2005, 105, 1445-1489;
b) J. Gaitzsch, X. Huang, B. Voit, Chem. Rev. 2016, 116, 1053-1093.
a) A. Ranquin, W. Versees, W. Meier, J. Steyaert, P. Van Gelder, Nano Lett.
2005, 5, 2220-2224; b) Y. Liu, J. J. Du, M. Yan, M. Y. Lau, J. Hu, H. Han, O.
O. Yang, S. Liang, W. Wei, H. Wang, J. M. Li, X. Y. Zhu, L. Q. Shi, W. Chen,
C. Ji, Y. F. Lu, Nat. Nanotechnol. 2013, 8, 187-192; c) P. R. Leduc, M. S.
Wong, P. M. Ferreira, R. E. Groff, K. Haslinger, M. P. Koonce, W. Y. Lee, J.
C. Love, J. A. McCammon, N. A. Monteiro-Riviere, V. M. Rotello, G. W.
Rubloff, R. Westervelt, M. Yoda, Nat. Nanotechnol. 2007, 2, 3-7.
[3]
a) F. Axthelm, O. Casse, W. H. Koppenol, T. Nauser, W. Meier, C. G. Palivan,
J. Phys. Chem. B 2008, 112, 8211-8217; b) Y. Anraku, A. Kishimura, M.
Kamiya, S. Tanaka, T. Nomoto, K. Toh, Y. Matsumoto, S. Fukushima, D.
Sueyoshi, M. R. Kano, Y. Urano, N. Nishiyama, K. Kataoka, Angew. Chem.
Int. Ed. 2016, 55, 560-565; c) M. Yan, J. J. Du, Z. Gu, M. Liang, Y. F. Hu, W.
J. Zhang, S. Priceman, L. L. Wu, Z. H. Zhou, Z. Liu, T. Segura, Y. Tang, Y. F.
Lu, Nat. Nanotechnol. 2010, 5, 48-53.
[4]
[5]
a) L. Schoonen, J. C. M. van Hest, Adv. Mater. 2016, 28, 1109-1128; b) P.
Tanner, P. Baumann, R. Enea, O. Onaca, C. Palivan, W. Meier, Acc. Chem.
Res. 2011, 44, 1039-1049; c) C. G. Palivan, R. Goers, A. Najer, X. Y. Zhang,
A. Car, W. Meier, Chem. Soc. Rev. 2016, 45, 377-411; d) V. Balasubramanian,
B. Herranz-Blanco, P. V. Almeida, J. Hirvonen, H. A. Santos, Prog. Polym.
Sci. 2016, 60, 51-85.
a) M. H. Li, P. Keller, Soft Matter 2009, 5, 927-937; b) F. H. Meng, Z. Y.
Zhong, J. Feijen, Biomacromolecules 2009, 10, 197-209; c) O. Onaca, R. Enea,
D. W. Hughes, W. Meier, Macromol. Biosci. 2009, 9, 129-139; d) T. Thambi, J.
H. Park, D. S. Lee, Biomater. Sci. 2016, 4, 55-69; e) X. L. Hu, Y. G. Zhang, Z.
G. Xie, X. B. Jing, A. Bellotti, Z. Gu, Biomacromolecules 2017, 18, 649-673;
f) Y. Lu, A. A. Aimetti, R. Langer, Z. Gu, Nat. Rev. Mater. 2017, 2, 16075; g)
X. L. Hu, J. C. Yu, C. G. Qian, Y. Lu, A. R. Kahkoska, Z. G. Xie, X. B. Jing, J.
B. Buse, Z. Gu, Acs Nano 2017, 11, 613-620.
[6]
a) K. T. Kim, J. J. L. M. Cornelissen, R. J. M. Nolte, J. C. M. van Hest, Adv.
Mater. 2009, 21, 2787-2791; b) J. Gaitzsch, D. Appelhans, L. G. Wang, G.
Battaglia, B. Voit, Angew. Chem. Int. Ed. 2012, 51, 4448-4451; c) Z. Y. Deng,
Y. F. Qian, Y. Q. Yu, G. H. Liu, J. M. Hu, G. Y. Zhang, S. Y. Liu, J. Am.
Chem. Soc. 2016, 138, 10452-10466; d) X. R. Wang, G. H. Liu, J. M. Hu, G. Y.
Zhang, S. Y. Liu, Angew. Chem. Int. Ed. 2014, 53, 3138-3142; e) M. Spulber,
A. Najer, K. Winkelbach, O. Glaied, M. Waser, U. Pieles, W. Meier, N. Bruns,
J. Am. Chem. Soc. 2013, 135, 9204-9212; f) Q. Yan, J. B. Wang, Y. W. Yin, J.
Y. Yuan, Angew. Chem. Int. Ed. 2013, 52, 5070-5073; g) C. G. Qian, P. J.
Feng, J. C. Yu, Y. L. Chen, Q. Y. Hu, W. J. Sun, X. Z. Xiao, X. L. Hu, A.
Bellotti, Q. D. Shen, Z. Gu, Angew. Chem. Int. Ed. 2017, 56, 2588-2593; h) K.
Renggli, P. Baumann, K. Langowska, O. Onaca, N. Bruns, W. Meier, Adv.
Funct. Mater. 2011, 21, 1241-1259.
This article is protected by copyright. All rights reserved.