10.1002/chem.201804496
Chemistry - A European Journal
COMMUNICATION
[9] Y. Yang, S. Ajmal, X. Zheng, L. Zhang, Sustainable Energy Fuels, 2018,2,
510-537.
after six additional cycles, demonstrating the high stability and
reusability of CPs-BT as a photocatalyst (Fig. 3b). During the
recyclability experiments, more than 400 μmol of CO gas was
generated, corresponding to a catalytic turnover number of ~20
for CPs-BT and ~400 for the cobalt co-catalyst. No apparent
change was observed in both FT-IR (Fig. S12) and DRS (Fig.
S13) spectrum of CPs-BT to demonstrate the excellently stable
chemical structure in conjugated networks. The wavelength
dependence of the apparent quantum yield of CO and H2
production was illustrated for CPs-BT in Figure 3c, with the
highest AQY of ca. 1.75% at 405 nm. In addition, some reported
modified polymeric photocatalysts with similar chemical
structures (such as carbon nitride and BCN systems) for CO2
reduction were listed in Table S2, the triazine-based CPs
polymer especially CPs-BT possessed a superior photocatalytic
activity with high selectivity.
In summary, we designed triazine-based CPs to be used as
emerging photocatalysts for visible-light-promoted reduction of
CO2 to CO. By varying the organic electron-withdrawing and
electron-donating units in the triazine-based polymer backbone,
the charge separation kinetics and catalytic reaction kinetics can
be promoted to enable the stable photoconversion of CO2 to CO
under visible light irradiation, giving an AQY of 1.75% at 405 nm.
By studying the reaction mechanism, we were able to observe
the enhancing effect of the strong polar and nitrogen- or oxygen-
containing solvents on the efficiency. This work demonstrates a
correlation between the structure of conjugated polymer
photocatalysts to their photocatalytic performance in CO2
[10] S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie,
Nature 2016, 529, 68-71.
[11] Y. Chen, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 1986-1989.
[12] X. Sun, Q. Zhu, X. Kang, H. Liu, Q. Qian, Z. Zhang, B. Han, Angew.
Chem., Int. Ed. 2016, 55, 6771-6775.
[13] A. Manzi, T. Simon, C. Sonnleitner, M. Döblinger, R. Wyrwich, O. Stern, J.
K. Stolarczyk, J. Feldmann, J. Am. Chem. Soc. 2015, 137, 14007-
14010.
[14] Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo, K. L. Materna, W. Liu, V. S.
Batista, G. W. Brudvig, H. Wang, J. Am. Chem. Soc. 2016, 138, 8076-
8079.
[15] T. Liu, S. Ali, Z. Lian, B. Li, D. S. Su, J. Mater. Chem. A 2017. 5, 21596-
21603.
[16] X. Duan, J. Xu, Z. Wei, J. Ma, S. Guo, S. Wang, H. Liu, S. Dou, Adv.
Mater. 2017, 29,1701784.
[17] H. Rao, L. C. Schmidt, J. Bonin, M. Robert, Nature 2017, 548,74-77.
[18] S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem.
Int. Ed. 2013, 52, 7372-7408.
[19] Y. Chen, G. Jia, Y, Hu, G. Fan, Y. H. Tsang, Z. Li, Z. Zou, Sustainable
Energy Fuels 2017, 1, 1875-1898.
[20] S. Wang, X. Wang, Angew. Chem. Int. Ed., 2016, 55, 2308-2320.
[21] W. Lin, H. Frei, J. Am. Chem. Soc. 2005, 127, 1610-1611.
[22] A. G. Slater, A. I. Cooper, Science 2015, 348, 8075.
[23] H. Xu, J. Gao, D. Jiang, Nat. Chem. 2015, 7, 905-912.
[24] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K.
Domen, M. Antonietti, Nat. Mater. 2009, 8, 76-80.
[25] J. Qin, S. Wang, H. Ren, Y. Hou, X. Wang, Appl. Catal. B: Environ. 2015,
179, 1-8.
[26] R. Kuriki, M. Yamamoto, K. Higuchi, Y. Yamamoto, M. Akatsuka, D. Lu, S.
Yagi, T. Yoshida, O. Ishitani, K. Maeda, Angew. Chem. Int. Ed. 2017,
56, 4867-4871.
reduction, which could open
a new avenue for carbon
photofixation by using soft organic conjugated polymers with the
ability to easily modify their chemical composition, electronic
structure and surface functionality.
[27] M. Rose, ChemCatChem 2014, 6, 1166-1182.
[28] J. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C.
Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak, A. I. Cooper,
Angew. Chem. Int. Ed. 2007, 46, 8574-8578.
[29] K. Zhang, D. Kopetzki, P. H. Seeberger, M. Antonietti, F. Vilela, Angew.
Chem. Int. Ed. 2013, 52, 1432-1436.
Acknowledgements
[30] Z. J. Wang, S. Ghasimi, K. Landfester, K. A. I. Zhang, Chem. Commun.
2014, 50, 8177-80.
This work was financially supported by the National Key
Technologies R & D Program of China (2018YFA0209301), the
National Natural Science Foundation of China (21802022,
21425309, 21761132002, and 21861130353) and the 111
Project (D16008). C. Y. thanks the support of Guest PhD
Program from Graduate School of Material Science in Mainz and
PPP project (201801940015). W. H. acknowledges the
scholarship of the China Scholarship Council (CSC). K. A. I. Z.
acknowledges the Max Planck Society for financial support.
[31] S. Ghasimi, S. Prescher, Z. J. Wang, K. Landfester, J. Yuan, K. A. I.
Zhang, Angew. Chem. Int. Ed. 2016, 54, 14549-14553.
[32] W. Huang, B. C. Ma, H. Lu, R. Li, L. Wang, K. Landfester, K. A. I. Zhang,
ACS Catal. 2017, 7,5438-5442.
[33] R. S. Sprick, J.-X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech, P. Guiglion, M.
A. Zwijnenburg, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc. 2015,
137, 3265-3270.
[34] C. Yang, B. C. Ma, L. Zhang, S. Lin, S. Ghasimi, K. Landfester, K. A. I.
Zhang, X. Wang, Angew. Chem. Int. Ed. 2016, 55, 9202-9206.
[35] L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci. 2014, 5,
2789-2793.
[36] K. Wang, L. Yang, X. Wang, L. Guo, G. Cheng, C. Zhang, S. Jin, B. Tan,
A. I. Cooper, Angew. Chem. Int. Ed. 2017, 56, 14149-14153.
[37] K. Schwinghammer, S. Hug, M. B. Mesch, J. Senker, Lotsch, B. V.,
Energy Environ. Sci. 2015, 8, 3345-3353.
Keywords: organic semiconductor • conjugated polymers•
trizaine-based polymers• CO2 reduction
[38] P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 2008, 47, 3450
–3453.
[1] Y. Izumi, Coord. Chem. Rev. 2013, 257, 171-186.
[2] N. S. Lewis; D. G. Nocera, Proc. Natl. Acad. Sci. 2006, 103, 15729-15735.
[3] A. Listorti, J. Durrant, J. Barber, Nat Mater 2009, 8, 929-930.
[4] W. Tu, Y. Zhou, Z. Zou, Adv. Mater. 2014, 26, 4607-4626.
[5] O. K. Varghese, M. Paulose, T. J. Latempa, C. A. Grimes, Nano Lett. 2009,
9, 731.
[39] X. Zhu, C. Tian, S. Mahurin, S. Chai, C. Wang, S. Brown, G. Veith, H. Luo,
H. Liu, S. Dai, J. Am. Chem. Soc. 2012, 134, 10478-10484.
[40] S. Ren, M. Bojdys, R. Dawson, A. Laybourn, Y. Khimyak, D. Adams, A. I.
Cooper, Adv. Mater. 2012, 24, 2357-2361.
[41] X. Zhu, S. Mahurin, S. An, C. Do-Thanh, C. Tian, Y. Li, L. Gill, E.
Hagaman, Z. Bian, J. Zhou, J. Hu, H. Liu, S. Dai, Chem. Commun.
2014, 50, 7933-7936.
[6] C. Song, Catal. Today 2006, 115, 2-32.
[7] L. N. He, J. Q. Wang, J. L. Wang, Pure Appl. Chem. 2009, 81, 2069-2080.
[8] M. Shi, Y. Shen, Curr. Org. Chem. 2003, 7, 737-745.
[42] M. Wang, L. Guo, D. Cao, Sci. China Chem. 2017, 60, 1090-1097.
This article is protected by copyright. All rights reserved.