2
0
h). Stoichiometric, nickel(0)-mediated coupling of 5 (NiCl
Ph P, Zn, DMF, 60 °C, 18 h) furnished a mixture of the
reduction product 7 (32%) and the desired dimer (+)-6
2
,
3
Scheme 1
2
1,22
(
50%).
Refluxing (+)-6 (PINDY) with CuCl
2 2 2 2
‚H O in CH Cl -
EtOH for 12 h (Scheme 2) resulted in the quantitative
Scheme 2
2
3
formation of 8 (75% after recrystallization). Single-crystal
X-ray analysis of the latter complex revealed an unusually
distorted geometry at the metal center (Figure 1),24 which
may have interesting implications for its catalytic activity.25
17
presence of acetic anhydride (Fe, Ac
°
2
O, toluene, AcOH, 0
C, 10 min)1 led to enamide 4 (90%), which afforded the
chloropyridine derivative 5 (70%) under the conditions of
Vilsmeyer-Haack reaction (HCONMe , POCl , 0-5 °C, 1
8,19
2
3
(11) For other chiral pyridine derivatives, see, e.g.: (a) Chelucci, G.;
Pinna, G. A.; Saba, A. Tetrahedron: Asymmetry 1997, 8, 2571. (b) Chelucci,
G. Tetrahedron: Asymmetry 1997, 8, 2667. (c) Chelucci, G.; Medici, S.;
Saba, A. Tetrahedron: Asymmetry 1997, 8, 3183. (d) Chelucci, G.; Berta,
D.; Saba, A. Tetrahedron 1997, 53, 3843. (e) Nordstr o¨ m, K.; Macedo, E.;
Moberg, C. J. Org. Chem. 1997, 62, 1604. (f) Bremberg, U.; Rahm, F.;
Moberg, C. Tetrahedron: Asymmetry 1998, 9, 3437. (g) W a¨ rnmark, K.;
Stranne, R.; Cernerud, M.; Terrien, I.; Rahm, F.; Nordstr o¨ m, K.; Moberg,
C. Acta Chem. Scand. 1998, 52, 961. For a recent overview of chiral
pyridines, see: (h) Moberg, C.; Adolfsson, H.; W a¨ rnmark, K. Acta Chem.
Scand. 1996, 50, 195. (i) Canal, J. M.; G o´ mez, M.; Jim e´ nez, F.; Rocamora,
M.; Muller, G.; Du n˜ ach, E.; Franco, D.; Jim e´ nez, A.; Cano, F. H.
Organometallics 2000, 19, 966. For recent examples of bipyridine ligands
with planar chirality, see ref 10 and: (j) W o¨ rsdorf o¨ r, U.; V o¨ gtle, F.; Nieger,
M.; Waletzke, M.; Grimme, S.; Glorius, F.; Pfaltz, A. Synthesis 1999, 597.
2 2
Figure 1. ORTEP diagram of 8‚CH Cl showing the atom labeling
scheme. Displacement parameters are shown at the 30% probability
level. H atoms are shown as spheres of arbitrary radius.
(
k) Djukic, J.-P.; Michon, C.; Maisse-Fran c¸ ois, A.; Allagapen, R.; Pfeffer,
M.; D o¨ tz, K. H.; De Cian, A.; Fischer, J. Chem. Eur. J. 2000, 6, 1064.
12) Chiral phenanthrolines: (a) Gladiali, S.; Chelucci, G.; Soccolini,
(
F.; Delogu, G.; Chiessa, G. J. Organomet. Chem. 1989, 370, 285. (b) Pe n˜ a-
Cabrera, E.; Norrby, P.-O.; Sj o¨ gren, M.; Vitagliano, A.; De Felice, V.; Oslob,
J.; Ishii, S.; O’Neill, D.; A° kermark, B.; Helquist, P. J. Am. Chem. Soc.
To explore the catalytic potential of copper complexes of
PINDY (6), we elected to study asymmetric allylic oxidations
1
996, 118, 4299. (c) Oslob, J. D.; A° kermark, B.; Helquist, P.; Norrby, P.-
O. Organometallics 1997, 16, 3015. Related nonchiral phenanthrolines: (d)
Hansson, S.; Norrby, P.-O.; Sj o¨ gren, M. P. T.; A° kermark, B. Organome-
tallics 1993, 12, 4940. (e) Sj o¨ gren, M. P. T.; Hansson, S.; A° kermark, B.
Organometallics 1994, 13, 1963. (f) Frisell, H.; A° kermark, B. Organome-
tallics 1995, 14, 561. (g) Sj o¨ gren, M. P. T.; Frisell, H.; A° kermark, B.
Organometallics 1997, 16, 942. (h) Hagelin, H.; A° kermark, B.; Norrby,
P.-O. Organometallics 1999, 18, 2884.
(18) The conversion of oximes into enamides has also been known to
occur in the presence of strong reducing agents, such as (AcO)2Cr or
(AcO)3Ti.19 However, in view of the cost of the former and the difficulties
associated with the availability of the latter reagent, none of them was
particularly suitable for large-scale operations.
(
13) PINene-Derived bipYridine.
(19) For the Ti(III) and Cr(II) reduction, see: (a) Boar, R. B.; McGhie,
J. F.; Robinson, M.; Barton, D. H. R.; Horwell, D. C.; Stick, R. V. J. Chem.
Soc., Perkin Trans. 1 1975, 1237. (b) Barton, D. H. R.; Bowles, T.; Husinec,
S.; Forbes, J. E.; Llobera, A.; Porter, E. A.; Zard, S. Z. Tetrahedron Lett.
1988, 29, 3343.
(20) For the method, see: Meth-Cohn, O.; Westwood, K. T. J. Chem.
Soc., Perkin Trans. 1 1984, 1173.
(21) For the method of R-chloropyridine dimerization, see ref 6a and
the following: (a) Dehmlow, E. V.; Sleegers, A. Liebigs Ann. Chem. 1992,
9, 953. (b) Brenner, E.; Schneider, R.; Fort, Y. Tetrahedron Lett. 2000, 41,
2881.
(22) Although this coupling is, a priori, amenable to a catalytic process,
reactions with sub-stoichiometric amounts (e.g., 10 mol %) of Ni(0) turned
out to lead predominantly to the reduction product 7.
(14) Brown, H. C.; Weissman, S. A.; Perumal, P. T.; Dhokte, U. P. J.
Org. Chem. 1990, 55, 1217.
15) (+)-Nopinone (+)-2 thus prepared from the commercially available
-)-â-pinene (-)-1 (Aldrich) exhibited [R]D +34.7 (c 4.0 MeOH). Since
the highest optical rotation reported for enantiopure nopinone is [R]D +39.9
0.3 (Grimshaw, N.; Grimshaw, J. T.; Juneja, H. R. J. Chem. Soc., Perkin
(
(
(
1
4
Trans. 1 1972, 50) or [R]D +40.52 (c 4.0 MeOH), our nopinone
corresponds to 86% ee.
(
16) Identical with the known compound: (a) Hall, H. K. J. Org. Chem.
963, 28, 3213. (b) Quon, H. H.; Chow, Y. L. Tetrahedron 1975, 31, 2349.
c) Yokoyama, Y.; Yunokihara, M. Chem. Lett. 1983, 1245.
17) For the method, see: Burk, M. J.; Casy, G.; Johnson, N. B. J. Org.
Chem. 1998, 63, 6084.
1
(
(
3048
Org. Lett., Vol. 2, No. 20, 2000