Page 5 of 7
The Journal of Organic Chemistry
(10) Potter, G. T.; Jayson, G. C.; Miller, G. J.; Gardiner, J. M. An Up-
parts per million with the residual protic solvent resonance as the
internal standard (chloroform: 7.27 ppm). Data were reported as
follows: chemical shift (multiplicity, integration). 13C NMR spec-
tra were recorded with complete proton decoupling. Chemical
shifts are reported in parts per million with the solvent resonance
as the internal standard (13CDCl3: 77.0 ppm).
dated Synthesis of the Diazo-Transfer Reagent Imidazole-1-Sulfonyl
Azide Hydrogen Sulfate. J. Org. Chem. 2016, 81, 3443–3446.
(11) For definitions of Tintit and Tonset and how they are obtained from
the DSC data, see Experimental Section: DSC Experimental Terminology.
(12) An alternative approach to improve safety regimes is to generate
and react diazo transfer reagents in continuous flow. Such processes avoid
the isolation and handling of hazardous reagents and significantly reduce
total reactor volumes. For selected examples of the use of diazo transfer
reagents in flow, see: a) Gérardy, R.; Winter, M.; Vizza, A.; Monbaliu, J.-
C. M. Assessing Inter- and Intramolecular Continuous-Flow Strategies
towards Methylphenidate (Ritalin) Hydrochloride. React. Chem. Eng.
2017, 2, 149–158. b) Deadman, B. J.; O’Mahony, R. M.; Lynch, D.;
Crowley, D. C.; Collins, S. G.; Maguire, A. R. Taming Tosyl Azide: The
Development of a Scalable Continuous Diazo Transfer Process. Org.
Biomol. Chem. 2016, 14, 3423–3431. c) O’Mahony, R. M.; Lynch, D.;
Hayes, H. L. D. D.; Ní Thuama, E.; Donnellan, P.; Jones, R. C.; Glennon,
B.; Collins, S. G.; Maguire, A. R. Exploiting the Continuous in Situ Gen-
eration of Mesyl Azide for Use in a Telescoped Process. Eur. J. Org.
Chem. 2017, 6533–6539.
(13) Cardillo, P.; Gigante, L.; Lunghi, A.; Fraleoni-Morgera, A.; Zani-
rato, P. Hazardous N-Containing System: Thermochemical and Computa-
tional Evaluation of the Intrinsic Molecular Reactivity of Some Aryl Az-
ides and Diazides. New J. Chem. 2008, 32, 47–53.
(14) Müller, S. T. R.; Murat, A.; Maillos, D.; Lesimple, P.; Hellier, P.;
Wirth, T. Rapid Generation and Safe Use of Carbenes Enabled by a Novel
Flow Protocol with In-Line IR Spectroscopy. Chem. Eur. J. 2015, 21,
7016–7020.
1
2
3
4
5
6
7
8
Synthetic Procedures:
ADT was prepared according to the report from Ma et al.16
CDMT is commercially available.
9
ASSOCIATED CONTENT
Supporting Information
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
The Supporting Information is available free of charge on the
ACS Publications website.
DSC plots of ADT, TGA plot of ADT, EGMS traces, synthetic
details and 1H and 13C NMR spectra for ADT. (PDF)
All characterization data for synthesized compounds, raw DSC
and TGA-EGMS data for ADT can be found at
AUTHOR INFORMATION
Corresponding Authors
(15) Zhu, S.-Z. Synthesis and Reactions of Fluoroalkanesulfonyl Az-
ides and N,N-Dichlorofluoroalkanesulfonamides. J. Chem. Soc. Perkin
Trans. 1 1994, 113, 2077–2081.
(16) Xie, S.; Yan, Z.; Li, Y.; Song, Q.; Ma, M. Intrinsically Safe and
Shelf-Stable Diazo-Transfer Reagent for Fast Synthesis of Diazo Com-
pounds. J. Org. Chem. 2018, 83, 10916–10921.
(17) An excellent description of these tests written for chemists can be
found in Section 1.4 of the following book: Banert, K.; Brase, S. Organic
Azides: Syntheses and Applications, 1st ed.; John Wiley & Sons, Ltd:
Chichester, UK, 2010. Normally the purview of energetic materials scien-
tists, see UN Recommendations on the Transport of Dangerous Goods:
Manual of Tests and Criteria (ST/SG/AC.10/11.Rev.6, ISBN 978-92-1-
goods/legal-instruments-and-recommendations/un-manual-of-tests-and-
criteria/rev6-files.html); 2015.
(18) Sperry, J. B.; Minteer, C. J.; Tao, J.; Johnson, R.; Duzguner, R.;
Hawksworth, M.; Oke, S.; Richardson, P. F.; Barnhart, R. W.; Bill, D. R.;
Giusto, R. A.; Weaver, J. D. Thermal Stability Assessment of Peptide
Coupling Reagents Commonly Used In Pharmaceutical Manufacturing.
Org. Process Res. Dev. 2018, 22, 1262–1275.
(19) In a previous report without experimental details, the decomposi-
tion of ADT was found to occur at 195 °C. Kayama, R.; Hasunuma, S;
Sekiguchi, S.; Matsui, K. The Thermal Reactions of Azido-1,3,5-triazines.
Bull. Chem. Soc. Jpn. 1974, 47, 2825-2829.
(20) An alternative explanation could be that ADT evaporates from the
open crucible before decomposition. However, due to the high melting
point and reported TGA of the decomposition of similar compound 2,4,6-
triazido-1,3,5-triazine, this seems less likely (See reference 22).
(21) a) Hazen, G. G.; Bollinger, F. W.; Roberts, F. E.; Russ, W. K.;
Seman, J. J.; Staskiewicz, S. 4-Dodecylbenzenesulfonyl Azides. Org.
Synth. 1996, 73, 144. b) Rewicki, D.; Tuchscherer, C. 1-Diazoindene and
Spiro[Indene-1,7’-Norcaradiene]. Angew. Chem. Int. Ed. Engl. 1972, 11,
44–45.
(22) Nedel’ko, V. V.; Korsunskii, B. L.; Larikova, T. S.; Chapyshev, S.
V.; Chukanov, N. V.; Yuantsze, S. Thermal Decomposition of 2,4,6-
Triazido-1,3,5-Triazine. Russ. J. Phys. Chem. B, 2016, 10, 570–575.
(23) Yoshida, T.; Yoshizawa, F.; Itoh, M.; Matsunaga, T.; Watanabe,
M. Prediction of Fire and Explosion Hazard for Reactive Chemicals (I):
Estimation of Explosive Properties of Self-Reactive Chemicals from SC-
DSC Data. Kogyo Kayak. 1987, 48, 311–316 (British library translation
available). A salient application of Yoshida’s correlations can be found in
the Pfizer peptide coupling work (See reference 18).
*E-mail: j.hallett@imperial.ac.uk.
*E-mail: philip.miller@imperial.ac.uk.
*E-mail: j.bull@imperial.ac.uk.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENTS
For financial support, we gratefully acknowledge GSK, the Phar-
macat Consortium and EPSRC for iCASE studentship funding,
and The Royal Society [University Research Fellowship,
UF140161 (to JAB) and Research Grants (RG150444 and
RGF\EA\180031)].
REFERENCES
(1) Maas, G. New Syntheses of Diazo Compounds. Angew. Chem. Int.
Ed. 2009, 48, 8186–8195.
(2) Hazen, G. G.; Weinstock, L. M.; Connell, R.; Bollinger, F. W. A
Safer Diazotransfer Reagent. Synth. Commun. 1981, 11, 947–956.
(3) a) Tuma, L. D. Identification of a Safe Diazotransfer Reagent.
Thermochim. Acta 1994, 243, 161–167. b) Bollinger, F. W.; Tuma, L. D.
Diazotransfer Reagents. Synlett 1996, 5, 407–413.
(4) Regitz, M. New Methods of Preparative Organic Chemistry. Trans-
fer of Diazo Groups. Angew. Chem. Int. Ed. Engl. 1967, 6, 733–749.
(5) Baum, J. S.; Shook, D. A.; Davies, H. M. L.; Smith, H. D. Diazo-
transfer Reactions with p-Acetamidobenzenesulfonyl Azide (p-ABSA).
Synth. Commun. 1987, 17, 1709–1716.
(6) Green, G. M.; Peet, N. P.; Metz, W. A. Polystyrene-Supported Ben-
zenesulfonyl Azide: A Diazo Transfer Reagent That Is Both Efficient and
Safe. J. Org. Chem. 2001, 66, 2509–2511.
(7) a) Zhu, S.-Z. Synthesis and Reactions of Fluoroalkanesulfonyl Az-
ides and N,N-Dichlorofluoroalkanesulfonamides. J. Chem. Soc. Perkin
Trans. 1 1994, 113, 2077–2081. b) Chiara, J. L.; Suárez, J. R. Synthesis of
α-Diazo Carbonyl Compounds with the Shelf-Stable Diazo Transfer Rea-
gent Nonafluorobutanesulfonyl Azide. Adv. Synth. Catal. 2011, 353, 575–
579. c) Suárez, J. R.; Collado-Sanz, D.; Cárdenas, D. J.; Chiara, J. L.
Nonafluorobutanesulfonyl Azide as a Shelf-Stable Highly Reactive Oxi-
dant for the Copper-Catalyzed Synthesis of 1,3-Diynes from Terminal
Alkynes. J. Org. Chem. 2015, 80, 1098–1106.
(8) Goddard-Borger, E. D.; Stick, R. V. An Efficient, Inexpensive, and
Shelf-Stable Diazotransfer Reagent: Imidazole-1-Sulfonyl Azide Hydro-
chloride. Org. Lett. 2007, 9, 3797–3800. A correction was later published
highlighting the explosion: Org. Lett. 2011, 13, 2514–2514.
(24) Bodman, G. T.; Chervin, S. Use of ARC in Screening for Explo-
sive Properties. J. Hazard. Mater. 2004, 115, 101–105.
(25) Stoessel, F. Thermal Safety of Chemical Processes; Wiley-VCH
Verlag GmbH: Weinheim, Germany, 2008, Chapter 3.
(9) Fischer, N.; Goddard-Borger, E. D.; Greiner, R.; Klapötke, T. M.;
Skelton, B. W.; Stierstorfer, J. Sensitivities of Some Imidazole-1-Sulfonyl
Azide Salts. J. Org. Chem. 2012, 77, 1760–1764.
ACS Paragon Plus Environment