10.1002/anie.201813689
Angewandte Chemie International Edition
COMMUNICATION
[6] Selected examples on activated aliphatic carboxylic acids, see: a) N. Zhu,
J. Zhao, H. Bao, Chem. Sci. 2017, 8, 2081–2085; b) W. Kong; C. Yu; H.
An; Q. Song, Org. Lett. 2018, 20, 349−352; c) G.-Z. Wang, R. Shang, Y.
Fu, Org. Lett. 2018, 20, 888–891; d) M. Koy, F. Sandfort, A. Tlahuext-Aca,
L. Quach, C. G. Daniliuc, F. Glorius, Chem. Eur. J. 2018, 24, 4552–4555;
e) H. Zhou, L. Ge, J. Song, W. Jian, Y. Li, C. Li, H. Bao, iScience 2018, 3,
255–263; f) Z.-H. Xia, C.-L. Zhang, Z.-H. Gao, S. Ye, Org. Lett. 2018, 20,
W.-J. Xiao, Angew. Chem. Int. Ed. 2015, 54, 11196–11199; Angew.
Chem. 2015, 127, 11348–11351. Selected work from other groups, see: c)
M. Majek, A. Jacobi von Wangelin, Angew. Chem. Int. Ed. 2015, 54,
2270- 2274; Angew. Chem. 2015, 127, 2298-2302; d) A. Cartier, E.
Levernier, V. Corcé, T. Fukuyama, A.-L. Dhimane, C. Ollivier, I. Ryu, L.
Fensterbank, Angew. Chem. Int. Ed. 2018, DOI: 10.1002/anie.201811858;
Angew. Chem. 2018, DOI: 10.1002/ange.201811858.
3496–3499; very recently,
a
Heck-type reaction with unactivated
[18] Please see the details in the Supporting Information.
carboxylic acids was developed by Wu: g) H. Cao, H. Jiang, H. Feng, J. M.
C. Kwan, X. Liu, J. Wu, J. Am. Chem. Soc. 2018, DOI:
10.1021/jacs.8b11218.
[19] a) D. D. M. Wayner, D. J. McPhee, D. Griller,J. Am. Chem. Soc. 1988,
110, 132–137; b) A. Singh, K. Teegardin, M. Kelly, K. S. Prasad, S.
Krishnan, J. D. Weaver, J. Organometal. Chem. 2015, 776, 51–59.
[7] Selected examples on alkyltrifluoroborates and activated oxime esters,
see: a) T. W. Liwosz, S. R. Chemler, Org. Lett. 2013, 15, 3034–3037; b) B.
Zhao, Z. Shi, Angew. Chem. Int. Ed. 2017, 56, 12727–12731; Angew.
Chem. 2017, 129, 12901–12905; c) X.-Y. Yu, J.-R. Chen, P.-Z. Wang, M.-
N. Yang, D. Liang, W.-J. Xiao, Angew. Chem. Int. Ed. 2018, 57, 738–743;
Angew. Chem. 2018, 130, 746–751; d) Z. Yin, J. Rabeah, A. Brückner, X.-
F. Wu, ACS Catal. 2018, 8, 10926−10930.
[8] For selected reviews, see: a) N. A. McGrath, M. Brichacek, J. T.
Njardarson, J. Chem. Educ. 2010, 87, 1348–1349; b) P. Ruiz-Castillo, S.
L. Buchwald, Chem. Rev. 2016, 116, 12564–12649; c) Y. Liu, H. Ge, Nat.
Chem. 2017, 9, 26–32.
[9] a) A. R. Katritzky, G. De Ville, R. C. Patel, Tetrahedron 1981, 37, 25–30;
b) J. B. Bapat, R. J. Blade, A. J. Boulton, J. Epsztajn, A. R. Katritzky, J.
Lewis, P. Molina-Buendia, P.-L. Nie, C. A. Ramsden, Tetrahedron Lett.
1976, 17, 2691; c) A. R. Katritzky, C. M. Marson, Angew. Chem. Int. Ed.
1984, 23, 420–429; Angew. Chem. 1984, 15, 879–884.
[10] K. Ouyang, W. Hao, W.-X. Zhang, Z. Xi, Chem. Rev. 2015, 115, 12045–
12090.
[11] SER of Katritzky salts by low-valenced Ni species, see: a) C. H. Basch, J.
Liao, J. Xu, J. J. Piane, M. P. Watson, J. Am. Chem. Soc. 2017, 139,
5313–5316; b) J. Liao, W. Guan, B. P. Boscoe, J. W. Tucker, J. W. Tomlin,
M. R. Garnsey, J. J. Piane, M. P. Watson, Org. Lett. 2018, 20, 3030–3033;
c) W. Guan, J. Liao, M. P. Watson, Synthesis 2018, 50, 3231–3237.
[12]Photo-induced SER of Katritzky salts, see: a) F. J. R. Klauck, M. J. James,
F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 12336–12339; Angew. Chem.
2017, 129, 12505–12509; during the implementation of this project, other
significant deaminative transformations was also reported, see: b) J. Wu,
L. He, A. Noble, V. K. Aggarwal, J. Am. Chem. Soc. 2018, 140, 10700–
10704; c) F. Sandfort, F. Strieth-Kalthoff, F. J. R. Klauck, M. J. James, F.
Glorius, Chem. Eur. J. 2018, DOI: 10.1002/chem.201804246; d) M.-M.
Zhang, F. Liu, Org. Chem. Front. 2018, DOI: 10.1039/c8qo01046c; e) M.
Ociepa, J. Turkowska, D. Gryko, ACS Catal. 2018, 8, 11362–11367; f) J.
Hu, G. Wang, S. Li, Z. Shi, Angew. Chem. Int. Ed. 2018, DOI:
10.1002/anie.201809608;
10.1002/ange.201809608.
Angew.
Chem.
2018,
DOI:
[13] Recent selected work from our group on organic photochemical synthesis,
see: a) J.-R. Chen, X.-Q. L.-Q. Hu, Lu, W.-J. Xiao, Acc. Chem. Res. 2016,
49, 1911–1923; b) Y.-Y. Liu, X.-Y. Yu, J.-R. Chen, M.-M. Qiao, X.-T. Qi,
D.-Q. Shi, W.-J. Xiao, Angew. Chem. Int. Ed. 2017, 56, 9527–9531;
Angew. Chem. 2017, 129, 9655–9659; c) W. Ding, L.-Q. Lu, Q.-Q. Zhou,
Y. Wei, J.-R. Chen, W.-J. Xiao, J. Am. Chem. Soc. 2017, 139, 63–66; d)
M.-M. Li, Y. Wei, J. Liu, H.-W. Chen, L.-Q. Lu, W.-J. Xiao, J. Am. Chem.
Soc. 2017, 139, 14707–14713 and reference 7c.
[14]a) W. B. White, C. P. Cannon, S. R. Heller, S. E. Nissen, R. M. Bergenstal,
G. L. Bakris, A. T. Perez, P. R. Fleck, Cyrus R. Mehta, S. Kupfer, C.
Wilson, W. C. Cushman, F. Zannad, N. Engl. J. Med. 2013, 369, 1327–
1335; b) Y. Yang, S.-L. Shi, D. Niu, P. Liu, S. L. Buchwald, Science 2015,
349, 62–66.
[15] For reviews, see: M. Beller, X.-F. Wu, Chapter 7: Carbonylative Heck
Reactions, in Transition Metal Catalyzed Carbonylation Reactions, Eds: M.
Beller, X.-F. Wu, Springer-Verlag, 2013, pp 133-146; b) X.-F. Wu, X. Fang,
L. Wu, R. Jackstell, H. Neumann, M. Beller, Acc. Chem. Res. 2014, 47,
1041–1053.
[16]Selected examples, see: a) K. S. Bloome, R. L. McMahen, E. J. Alexanian,
J. Am. Chem. Soc. 2011, 133, 20146–20148; b) S. Sumino, A. Fusano, T.
Fukuyama, I. Ryu, Acc. Chem. Res. 2014, 47, 1563-1574.
[17] a) W. Guo, L.-Q. Lu, Y. Wang, Y.-N. Wang, J.-R. Chen, W.-J. Xiao,
Angew. Chem. Int. Ed. 2015, 54, 2265–2269; Angew. Chem. 2015, 127,
2293–2297; b) Q.-Q. Zhou, W. Guo, W. Ding, X. Wu, X. Chen, L.-Q. Lu,
This article is protected by copyright. All rights reserved.