10.1002/ejoc.201900952
European Journal of Organic Chemistry
COMMUNICATION
(E1/2 = +0.94 V vs SCE)[23] is an unfavorable process. Conversely,
formate oxidation, coupled with HAT to cyclohexanethiyl radical is
likely far more facile.[12a] Another possible mechanism for
regeneration of ground state photocatalyst is proton-coupled
electron transfer (PCET) from the thiol.[24] Further evidence and
discussion of the reaction mechanism can be found in the
Supporting Information.
Seeking to apply this methodology to other synthetically
useful transformations, the coupling of 4-chlorobenzonitrile (2a)
with the styrene derivative 1,1-diphenylethylene (9) was
examined (Scheme 3). The desired reductive coupling product 10
was obtained in a good 61% yield. Similar transformations using
aryl bromide starting materials have required long reaction times
(>24 h) to reach a similar yield,[6b][7] compared to the 10 minute
residence time used in this case.
Keywords: photoredox • continuous flow • hydrogen atom
transfer • flow photochemistry • aryl halides
[1]
[2]
C. S. Wang, P. H. Dixneuf, J. F. Soulé, Chem. Rev. 2018, 118, 7532–
7585.
a) I. Ghosh, L. Marzo, A. Das, R. Shaikh, B. König, Acc. Chem. Res.
2016, 49, 1566–1577; b) F. Mo, G. Dong, Y. Zhang, J. Wang, Org. Biomol.
Chem. 2013, 11, 1582–1593.
[3]
a) N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–10166;
b) M. Anselmo, A. Basso, S. Protti, D. Ravelli, ACS Catal. 2019, 9, 2493–
2500.
[4]
[5]
H. G. Roth, N. A. Romero, D. A. Nicewicz, Synlett 2016, 27, 714–723.
For examples of iridium catalysis for the photochemical reduction of
(hetero)aryl iodides and bromides, see: a) J. J. Devery, J. D. Nguyen, C.
Dai, C. R. J. Stephenson, ACS Catalysis 2016, 6, 5962–5967; b) J. D.
Nguyen, E. M. D’Amato, J. M. R. Narayanam, C. R. J. Stephenson, Nat.
Chem. 2012, 4, 854–859; c) R. A. Aycock, H. Wang, N. T. Jui, Chem. Sci.
2017, 8, 3121–3125; d) A. Arora, J. D. Weaver Acc. Chem. Res. 2016,
49, 2273–2283 e) C. P. Seath, D. B. Vogt, Z. Xu, A. J. Boyington, N. T.
Jui, J. Am. Chem. Soc. 2018, 140, 15525-15534.
PTH, CySH,
HCOOH, DIPEA
Cl
Ph
Ph
Ph
Ph
MeCN, 365 nm LEDs,
= 10 min
[6]
a) I. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science 2014, 346, 725–
728; b) I. Ghosh, B. König, Angew. Chem. Int. Ed. 2016, 55, 7676–7679;
c) R. S. Shaikh, S. J. S. Düsel, B. König, ACS Catal. 2016, 6, 8410–8414;
d) L. Marzo, I. Ghosh, F. Esteban, B. König, ACS Catal. 2016, 6, 6780–
6784; e) J. I. Bardagi, I. Ghosh, M. Schmalzbauer, T. Ghosh, B. König,
Eur. J. Org. Chem. 2018, 34–40; f) A. Seegerer, P. Nitschke, R. M.
Gschwind, Angew. Chem. Int. Ed. 2018, 57, 7493–7497.
I. Ghosh, R. S. Shaikh, B. König, Angew. Chem. Int. Ed. 2017, 56, 8544–
8549.
NC
NC
flow, tRes
2a
9
10,
61%
Scheme 3. Reductive coupling of aryl chloride with a styrene derivative.
Conditions: aryl chloride (0.85 mmol), 1,1-diphenylethylene (4.25 mmol), PTH
(10 mol%), CySH (5 mol%), HCOOH (4.25 mmol), DIPEA (4.25 mmol), MeCN
(0.1 M), 365 nm LEDs, 50 °C, conducted in flow with a 10 minute residence
time, 3.5 bar back pressure, 0.85 mmol scale. Isolated yield is shown.
[7]
[8]
[9]
A. U. Meyer, T. Slanina, A. Heckel, B. König, Chem. Eur. J. 2017, 23,
7900–7904.
Conclusion
J. Ke, H. Wang, L. Zhou, C. Mou, J. Zhang, L. Pan, Y. R. Chi, Chem. Eur.
J. 2019, 25, 6911–6914.
In summary, we have demonstrated the effectiveness of
HAT catalysis in combination with a strongly reducing organic
photoredox catalyst in flow, improving reaction rate and selectivity
of aryl halide and carbonyl reductions. The application of
continuous flow has acted to further accelerate these
transformations, in one case increasing productivity by a factor of
>20. Furthermore, the tuning of residence time and light intensity
allows control over reaction selectivity in some cases, where
single dehalogenation of dihalogenated aryl halides can be
achieved. The catalytic system is also effective in pinacol
couplings, achieving significantly higher yields in short reaction
times, when compared to previous reports. Mechanistic
experiments suggest that the thiol additive is involved in
regeneration of the ground state photocatalyst, rather than any
excited state interaction. Finally, the reduction of an aryl chloride
was performed in the presence of a styrene radical trap, to
achieve a reductive coupling.
[10] a) R. Matsubara, T. Yabuta, U. Md Idros, M. Hayashi, F. Ema, Y. Kobori,
K. Sakata, J. Org. Chem. 2018, 83, 9381–9390; b) E. H. Discekici, N. J.
Treat, S. O. Poelma, K. M. Mattson, Z. M. Hudson, Y. Luo, C. J. Hawker,
J. R. de Alaniz, Chem. Commun. 2015, 51, 11705–11708.
[11] a) S. O. Poelma, G. L. Burnett, E. H. Discekici, K. M. Mattson, N. J. Treat,
Y. Luo, Z. M. Hudson, S. L. Shankel, P. G. Clark, J. W. Kramer, C. J.
Hawker, J. R. de Alaniz, J. Org. Chem. 2016, 81, 7155–7160; b) N. J.
Treat, H. Sprafke, J. W. Kramer, P. G. Clark, B. E. Barton, J. R. de Alaniz,
B. P. Fors, C. J. Hawker, J. Am. Chem. Soc. 2014, 136, 16096–16101.
[12] a) H. Wang, N. T. Jui, J. Am. Chem. Soc. 2018, 140, 163–166; b) F.-D.
Lu, D. Liu, L. Zhu, L.-Q. Lu, Q. Yang, Q.-Q. Zhou, Y. Wei, Y. Lan, W.-J.
Xiao, J. Am. Chem. Soc. 2019, 141, 6167–6172.
[13] A. J. Boyington, C. P. Seath, A. M. Zearfoss, Z. Xu, N. T. Jui, J. Am.
Chem. Soc. 2019, 141, 4147–4153/
[14] a) D. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel, T. Noël, Chem.
Rev. 2016, 116, 10276–10341; b) Y. Su, N. J. W. Straathof, V. Hessel,
T. Noël, Chem. Eur. J. 2014, 20, 10562–10589; c) K. Loubière, M.
Oelgemöller, T. Aillet, O. Dechy-Cabaret, L. Prat, Chem. Eng. Process.
- Process Intensif. 2016, 104, 120–132.
[15] T. Noël, J. Flow Chem. 2017, 7, 87–93.
[16] For selected examples of throughput optimization for flow photochemical
transformations, see: a) K. C. Harper, E. G. Moschetta, S. V Bordawekar,
S. J. Wittenberger, ACS Cent. Sci. 2019, 5, 109–115; b) Y. Su, K.
Kuijpers, V. Hessel, T. Noël, React. Chem. Eng. 2016, 1, 73–81; c) J. D.
Williams, M. Nakano, R. Gérardy, J. A. Rincon, O. de Frutos, C. Mateos,
J.-C. M. Monbaliu, C. O. Kappe, Org. Process Res. Dev. 2019, 23, 78–
87; d) J. D. Williams, Y. Otake, G. Coussanes, I. Saridakis, N. Maulide,
C. O. Kappe, ChemPhotoChem 2019, 3, 229–232.
Acknowledgements
The CCFLOW Project (Austrian Research Promotion Agency
FFG No. 862766) is funded through the Austrian COMET
Program by the Austrian Federal Ministry of Transport, Innovation
and Technology (BMVIT), the Austrian Federal Ministry of
Science, Research and Economy (BMWFW), and by State of
Styria (Styrian Funding Agency (SFG)). The authors gratefully
acknowledge Corning SAS for the generous loan of the Corning
Advanced-Flow Lab Photoreactor used in this study.
[17] See the Supporting Information for further details.
[18] K. Daasbjerg, Acta Chem. Scand. 1993, 47, 398–402.
This article is protected by copyright. All rights reserved.