Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Journal of the American Chemical Society
Page 4 of 10
1062283). This material is available free of charge via
tween log10(kobs) and the Hammett resonance effect
parameters (σ+ or σ−),19 which is consistent with the
absence of significant charge build-up at any center
during the reaction (Figure S58).9a The positive
Hammett reaction constant (ρ = +0.47) is consistent
with a decrease in the tetrazine LUMO energy as the
electron-withdrawing power of the substituent in-
creases. Remarkably, the magnitude of ρ is compa-
rable to values measured for IEDDA reactions in
non-supramolecular systems in which the substitu-
ent is much closer to the reaction site (5 bonds22 vs.
11 bonds in the present case). We attribute this sen-
sitivity to the unimpeded conjugation pathway be-
tween the aniline para-substituent and the tetrazine
ring—an effect also reflected in the influence of the
tetrazine moiety over MLCT absorption, as noted
above.
1
2
3
4
5
6
7
8
AUTHOR INFORMATION
Corresponding Author
†E-mail: jrn34@cam.ac.uk
Author Contributions
‡D.A.R. and B.S.P. contributed equally.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by the UK Engineering and
Physical Sciences Research Council (EPSRC). The au-
thors thank Diamond Light Source (UK) for synchro-
tron beamtime on I19 (MT8464), the Department of
Chemistry NMR facility, University of Cambridge, and
the EPSRC UK National Mass Spectrometry Facility at
Swansea University. D.A.R. acknowledges the Gates
Cambridge Trust for Ph.D. funding. B.S.P. acknowl-
edges the Herchel Smith Research Fellowship from the
University of Cambridge and the Fellowship from Cor-
pus Christi College, Cambridge.
REFERENCES
1. (a) Corbett, P. T., Leclaire, J., Vial, L., West, K. R., Wietor, J.-L.,
Sanders, J. K. M., Otto, S., Chem. Rev., 2006, 106, 3652-3711; (b)
Sarma, R. J., Nitschke, J. R., Angew. Chem., Int. Ed., 2008, 47, 377-380;
(c) Belowich, M. E., Stoddart, J. F., Chem. Soc. Rev., 2012, 41, 2003-
2024.
2. (a) Ma, Z., Han, S., Hopson, R., Wei, Y., Moulton, B., Inorg.
Chim. Acta, 2012, 388, 135-139; (b) Roberts, D. A., Castilla, A. M.,
Ronson, T. K., Nitschke, J. R., J. Am. Chem. Soc., 2014, 136, 8201-8204;
(c) Young, M. C., Johnson, A. M., Hooley, R. J., Chem. Commun.,
2014, 50, 1378-1380.
3. (a) Fuller, A.-M., Leigh, D. A., Lusby, P. J., Oswald, I. D. H.,
Parsons, S., Walker, D. B., Angew. Chem., Int. Ed., 2004, 43, 3914-
3918; (b) Kaucher, M. S., Harrell, W. A., Davis, J. T., J. Am. Chem.
Soc., 2005, 128, 38-39; (c) Fuller, A.-M. L., Leigh, D. A., Lusby, P. J.,
Slawin, A. M. Z., Walker, D. B., J. Am. Chem. Soc., 2005, 127, 12612-
12619; (d) Leigh, D. A., Lusby, P. J., McBurney, R. T., Morelli, A.,
Slawin, A. M. Z., Thomson, A. R., Walker, D. B., J. Am. Chem. Soc.,
2009, 131, 3762-3771.
Figure 3. Plot of log10(kobs) against σpara. Aniline para-
substituents are labeled in the diagram.
Chemical self-assembly has proven capable of
generating architectures of great structural23 and
functional24 complexity. The development of new
methods to cleanly modify and transform these as-
semblies can expand the amount of chemical space
accessible,25 as each new reactive motif (tetrazene,
in this study) may be incorporated into many previ-
ously reported structure types. Attractive features of
our method are its clean “click” nature,26 the ability
to incorporate new functionality via BCNM, and the
ability to adjust reaction rates through modular var-
iation of the aniline subcomponent. Future work
will seek to adapt this IEDDA methodology to other
supramolecular architectures in order to modulate
phenomena such as guest binding, reactivity and
structural transformations.
4. Schneider, M. W., Oppel, I. M., Griffin, A., Mastalerz, M., Angew.
Chem., Int. Ed., 2013, 52, 3611-3615.
5. (a) Chakrabarty, R., Stang, P. J., J. Am. Chem. Soc., 2012, 134,
14738-14741; (b) Barran, P. E., Cole, H. L., Goldup, S. M., Leigh, D. A.,
McGonigal, P. R., Symes, M. D., Wu, J., Zengerle, M., Angew. Chem.,
Int. Ed., 2011, 50, 12280-12284; (c) Han, S., Ma, Z., Hopson, R., Wei,
Y., Budil, D., Gulla, S., Moulton, B., Inorg. Chem. Commun., 2012, 15,
78-83; (d) Zhao, D., Tan, S., Yuan, D., Lu, W., Rezenom, Y. H., Jiang,
H., Wang, L.-Q., Zhou, H.-C., Adv. Mater., 2011, 23, 90-93.
6. Brega, V., Zeller, M., He, Y., Peter Lu, H., Klosterman, J. K.,
Chem. Commun., 2015, 51, 5077-5080.
7. (a) Mosquera, J., Zarra, S., Nitschke, J. R., Angew. Chem., Int. Ed.,
2014, 53, 1556-1559; (b) Acharyya, K., Mukherjee, P. S., Chem. Eur. J.,
2015, 21, 6823-6831.
8. Wang, M., Lan, W.-J., Zheng, Y.-R., Cook, T. R., White, H. S.,
Stang, P. J., J. Am. Chem. Soc., 2011, 133, 10752-10755.
ASSOCIATED CONTENT
Supporting Information. Synthetic details, charac-
terization data, NMR and mass spectra, kinetics anal-
yses, X-ray crystallography data. Crystallographic data
are deposited with the CCDC (numbers 1062282-
9. (a) Knall, A.-C., Slugovc, C., Chem. Soc. Rev., 2013, 42, 5131-5142;
(b) Foster, R. A. A., Willis, M. C., Chem. Soc. Rev., 2013, 42, 63-76.
ACS Paragon Plus Environment