October 2006
1395
Table 1. Electroanalytical and Preparative Data
Peak potentials (V)
Conversion
Applied potential Purification
Product
A1
A2
C1
C2
C0
yield (%)
1a→5a
1b→5b
1c→5c
0.364
0.411
0.214
—
—
0.501
0.026
0.046
—
—
—
ꢁ0.010
—
0.095
—
0.250 V
0.300 V
0.400 V
H O : AN
52
77
61
2
H O : AN
2
H O : AN
2
KBr
max
(
100), 273 (10), 255 (10), 165 (25), 110 (20), 76 (15), 44 (25). FT-IR n
volves a transfer of two electrons and two protons to provide
the associated hydroquinones (Figs. 7, 8).
ꢁ1
cm : 3475 (OH, br), 3300—2003 (OH, br, carboxylic acid), 1741 (CꢀO),
699 (CꢀO), 1618, 1595, 1444 (Ar), 1380, 1340, 1236 (C–O), 925, 771,
96. H-NMR (DMSO-d , 500 MHz) d: 5.44 (1H, s, catechol ring proton),
.46 (1H, s, catechol ring proton), 7.26—7.30 (5H, m, Ar protons), 7.69—
.74 (4H, m, Ar protons), 7.94 (1H, s, hydroxy proton), 8.21 (1H, s, hydroxy
1
6
6
7
1
6
Experimental
Apparatus All of the electrochemical experiments were performed with
the aid of a setup, comprising a PC PIII Pentium 300 MHz microcomputer
equipped with a data acquisition board (PCL-818PG, PC-Labcard Co.) and a
proton), 17.61 (1H, br, carboxilic acid proton).
32)
custom made potentiostat. The working electrode (WE) used in the
Acknowledgements The financial support provided by the Tehran Uni-
2
voltammetry experiment was a glassy carbon electrode (disc, Sꢀp mm ). A
versity Research Affairs is gratefully acknowledged by the authors.
platinum wire was used as the counter electrode (CE). Moreover, the used
WE in controlled-potential coulometry was a carbon rod (4 mm in diameter References
and 3 cm in length). In addition, the macroscale electrolysis was an assembly
of three carbon rods (8 mm in diameter and 4 cm in length). The WE poten-
tials were measured versus the Ag|AgCl|KCl, sat. as a reference electrode.
The cyclic voltammograms of 5b and 5c obtained in acetonitrile (AN) con-
1) Link K. P., Circulation, 19, 97—107 (1959).
2) Field J. B., Goldfarb M. S., Ware A. G., Griffith G. C., Circulation, 11,
576—583 (1955).
3) Pascale L. R., Olwin G. H., Circulation, 9, 230—237 (1954).
4) Martin G. R., Kirkpatrick W. E., King D. R., Robertson I. D., Hood P.
J., Sutherland J. R., Wildlife Research, 21, 85—93 (1994).
5) Shapiro S. L., Geiger K., Freedman L., J. Org. Chem., 25, 1860—1865
(1960).
taining 0.05 M LiClO as a supporting electrolyte and the working electrode
4
ꢂ
(
WE) potentials were measured versus the Ag|0.01 M Ag couple in the elec-
trolyte solution as a reference electrode.
Also, the NMR spectra were recorded on a Bruker FT-NMR-80 AC, the
IR spectra were recorded on a Shimadzu FT-IR-4300 Spectrophotometer.
MS spectra were obtained using a HP (Agilent Technology) GC-6890, MS-
6) Beauregard J. R., Tusing T. W., Hanzal R. F., J. Agric. Food Chem., 3,
124—127 (1955).
5
973 (EI at 20 eV and 70 eV). The melting point of the products were ob-
7) Chichirau A., Flueraru M., Chepeleve L. L., Wright J. S., Willmore W.
G., Durst T., Hussain H. H., Charron M., Free Rad. Biol. Med., 38,
344—355 (2005).
8) Li B., Zhang D., Luo Y., Chen X., Chem. Pharm. Bull., 54, 297—300
(2006).
tained with the use of an electrothermal melting point model 9200.
Reagents Furthermore, 4-tert-butylcatechol, were reagent-grade mate-
rial and phosphate salts was of pro-analysis grade from Merck. In addition,
2-phenyl-1,3-indandione, 4-methylcatechol and 2,3-dihydroxybenzoic acid
were reagent-grade materials from Aldrich and LiClO , AgNO and HPLC-
9) Masuda M., Tsunoda M., Imai K., Biol. Pharm. Bull., 29, 202—205
(2006).
10) Feng Z., Jiang J., Wang Y., Zhang P., Chem. Pharm. Bull., 53, 1330—
1332 (2005).
4
3
grade acetonitrile (Fluka) were used as received. These chemicals were used
without further purification. All experiments were carried out at room tem-
perature.
Electroorganic Synthesis of Products (5a—c) In a typical procedure,
11) Mibu N., Yokomizo K., Uyeda M., Sumoto K., Chem. Pharm. Bull.,
53, 1171—1174 (2005).
12) Alanko J., Rutta A., Holm P., Mencha I., Vapaatalo H., Metsa-Ketela
T., Free Rad. Biol. Med., 26, 193—201 (1999).
1
(
00 ml mixture of water–acetonitrile (90 : 10) containing of phosphate buffer
pHꢀ7.0, cꢀ0.15 M) was pre-electrolyzed at the chosen potential (Table 1),
in an undivided cell; subsequently, 2 mmol of 4-tert-butylcatechol (1a), 4-
methylcatechol (1b) or 2,3-dihydroxybenzoic acid (1c), and 2-phenyl-1,3-in- 13) Antonio L., Grillasca J., Taskinen J., Elovaara E., Burchell B., Piet M.,
dandione (3) (2 mmol) were added to the cell. The electrolysis was stopped
when the current reached a value that was less than 5% of the initial value.
Ethell B., Ouzzine M., Fournel S., Magdalou J., Drug Metab. Dispos.,
30, 199—207 (2002).
The process was interrupted several times during the electrolysis and the 14) Colic M., Pavelic K., J. Mol. Med., 78, 333—336 (2000).
carbon anode was washed in acetone in order to reactivate it. At the end of 15) Bayandori Moghaddam A., Kobarfard F., Fakhari A. R., Nematollahi
electrolysis, the precipitated solid was collected by filtration and purification
D., Hosseiny Davarani S. S., Electrochim. Acta, 51, 739—744 (2005).
from a mixture of water–acetonitrile (H O : AN). Then products were char- 16) Golabi S. M., Pournaghi-Azar M. H., Electrochim. Acta, 32, 425—431
2
1
acterized by using FT-IR, H-NMR, and MS.
(1987).
Products Characteristics 2-(2-tert-Butyl-4,5-dihydroxyphenyl)-2-
phenyl-2H-indene-1,3-dione (C H O , 5a): mp >205 °C. MS (70 eV):
17) Hosseiny Davarani S. S., Nematollahi D., Shamsipur M., Najafi N. M.,
Masoumi L., Ramyar S., J. Org. Chem., 71, 2139—2142 (2006).
18) Azzem M. A., Zahran M., Haggag E., Bull. Chem. Soc. Jpn., 67,
1390—1395 (1994).
19) Bayandori Moghaddam A., Kobarfard F., Hosseiny Davarani S. S., Ne-
matollahi D., Shamsipur M., Fakhari A. R., J. Electroanal. Chem., 586,
161—166 (2006).
2
5
22
4
ꢂ
ꢂ
ꢂ
m/zꢀ387 [Mꢂ1] (20), 386 [M] (90), 371 [MꢁCH ] (100), 235 (5), 221
3
KBr
ꢁ1
(
5), 165 (15), 105 (20), 77 (10). FT-IR nmax cm : 3463 (OH, br), 3058
3
(C–H, sp ), 1737 (CꢀO), 1695 (CꢀO), 1596, 1521 (Ar), 1441, 1429 (tert),
1
1
1
307, 1263, 1213 (C–O), 1039, 698. H-NMR (DMSO-d , 500 MHz) d:
6
.18 (9H, s, tert-butyl), 5.88 (1H, s, catechol ring proton), 6.15 (1H, s, cate-
chol ring proton), 7.35—7.41 (5H, m, Ar protons), 7.97—7.99 (4H, m, Ar
protons), 8.02 (1H, s, hydroxy proton), 8.07 (1H, s, hydroxy proton).
20) Golabi S. M., Nourmohammadi F., Saadnia A., J. Electroanal. Chem.,
548, 41—47 (2003).
2
-(4,5-Dihydroxyphenyl-2-methylphenyl)-2-phenyl-2H-indene-1,3-dione
21) Fakhari A. R., Nematollahi D., Bayandori Moghaddam A., J. Elec-
troanal. Chem., 577, 205—210 (2005).
22) Fakhari A. R., Nematollahi D., Bayandori Moghaddam A., Elec-
trochim. Acta, 50, 5322—5328 (2005).
23) Izutsu K., “Electrochemistry in Nonaqueous Solutions,” John Wiley &
Sons, Weinheim, 2002, pp. 132—133.
24) Wang J., “Analytical Electrochemistry,” 2nd ed., John Wiley & Sons,
New York, 2001, p. 31.
ꢂ
ꢂ
(
(
C H O , 5b): mp >205 °C. MS (70 eV): m/zꢀ345 [Mꢂ1] (20), 344 [M]
22
16
4
KBr
max
100), 308 (15), 239 (15), 221 (10), 165 (20), 105 (10), 76 (20). FT-IR n
ꢁ
1
cm : 3490 (OH, br), 3367 (OH, br), 1741 (CꢀO), 1699 (CꢀO), 1606,
1
1
5
516 (Ar), 1361, 1290, 1255, 1051 (C–O), 771, 611. H-NMR (DMSO-d ,
6
00 MHz) d: 1.67 (3H, s, Me), 6.04 (1H, s, catechol ring proton); 6.51 (1H,
s, catechol ring proton); 7.24—7.41 (5H, m, Ar protons); 8.01—8.07 (4H,
m, Ar protons), 8.64 (1H, s, hydroxy proton), 8.87 (1H, s, hydroxy proton).
5
-(2,3-Dihydro-1,3-dioxo-2-phenyl-1H-inden-2-yl)-2,3-dihydroxybenzoic 25) Young T. E., Griswold J. R., Hulbert M. H., J. Org. Chem., 39, 1980—
ꢂ
Acid (C H O , 5c): mp ꢃ205 °C. MS (20, 70 eV): m/zꢀ330 [MꢁCO ]
1982 (1974).
22
14
6
2