Published on Web 06/07/2007
Elastic and Inelastic Electron Tunneling Spectroscopy of a
New Rectifying Monolayer
Andrei Honciuc,†,‡ Robert M. Metzger,*,† Aijun Gong,§, and Charles W. Spangler§,|
Contribution from the Laboratory for Molecular Electronics, Chemistry Department, UniVersity
of Alabama, Tuscaloosa, Alabama 35487-0336, and Department of Chemistry, Montana State
UniVersity, Bozeman, Montana 59717
Received December 5, 2006; E-mail: rmetzger@ua.edu
Abstract: Rectification of electrical current was observed in a Langmuir-Schaefer monolayer of fullerene-
bis[ethylthio-tetrakis(3,4-dibutyl-2-thiophene-5-ethenyl)-5-bromo-3,4-dibutyl-2-thiophene] malonate, Au elec-
trodes at room temperature (there are two regimes of asymmetry, at lower bias, i.e., between 0 and (2 V,
and at higher bias), and also between Pb and Al electrodes at 4.2 K. The latter experiment was coupled
with second harmonic detection of the second derivative of the current with respect to voltage (d2I/dV2).
The d2I/dV2 spectrum shows intramolecular vibrations, and also two antisymmetric broad bands, centered
at (0.65 V, due to resonant electron tunneling between the Fermi level(s) of the electrodes and the lowest
unoccupied molecular orbital of the molecule.
Introduction
by scanning tunneling microscopy have yielded several other
rectifiers.12-16 Most of these studies coupled the measured I-V
Electrical rectification in “metal|organic monolayer|metal”
(MOM) junctions is a fundamental problem of asymmetric
electron transfer across one “electroactive” molecule (or many
molecules in parallel), but may also lead to single organic
molecules as components for future nanoscopic organic elec-
tronic devices.
The first proposed mechanism for electrical rectification by
a single molecule was that of Aviram and Ratner:1 At different
values of forward and reverse bias, the molecular energy levels
of the donor and acceptor are brought differently into resonance
with the Fermi level of the (macroscopic) metal electrodes, and
the current-voltage plot (I-V curve) should be asymmetric with
respect to positive and negative bias.2 Many unimolecular
rectifiers have been studied;3-11 single-molecule measurements
curves with a theoretical and ancillary spectroscopic character-
ization of these electroactive molecules, in solution, in bulk,
and in monolayers. The purpose was to associate the highest
occupied molecular orbital (HOMO), the lowest unoccupied
molecular orbital (LUMO), and the electrode Fermi energies
with the onset of enhanced electron current beyond a critical
forward bias (“turn-on voltage”). The mechanism of electron
transport in molecules and molecular wires is not completely
elucidated. Spectroscopic studies of the monolayer under
electrical bias are severely limited by the difficulty of probing
the molecules within the MOM junction by sensitive spectro-
scopic methods.17,18
Theoretical calculations provide excellent insights19-22 into
the electrical conduction through a molecule by Landauer’s
† University of Alabama.
(9) Honciuc, A.; Jaiswal, A.; Gong, A.; Ashworth, K.; Spangler, C. W.;
Peterson, I. R.; Dalton, L. R.; Metzger, R. M. J. Phys. Chem. B 2005, 109,
857-871.
‡ Present address: Department of Chemical and Biological Engineering,
University of Colorado, Boulder, CO 80309-0424.
§ Montana State University.
(10) Shumate, W. J.; Mattern, D. L.; Jaiswal, A.; Dixon, D. A.; White, T. R.;
Burgess, J.; Honciuc, A.; Metzger, R. M. J. Phys. Chem. B 2006, 110,
11146-11159.
Present address: Department of Chemistry, University of Rochester,
Rochester, NY 14627.
(11) Oleynik, I. I.; Kozhushner, M. A.; Posvyanskii, V. S.; Yu, L. Phys. ReV.
Lett. 2006, 96, 09803-1-09803-4.
| Present address: Rastris, 2100 Fairway Dr., Suite 104, Bozeman, MO
58715.
(12) Ashwell, G. J.; Tyrrell, W. D.; Whittam, A. J. J. Mater. Chem. 2003, 13,
2855-2857.
(1) Aviram, A.; Ratner, M. Chem. Phys. Lett. 1974, 29, 277-283.
(2) Stokbro, K.; Taylor, J.; Brandbyge, M. J. Am. Chem. Soc. 2003, 125, 3674-
3675.
(13) Ashwell, G. J.; Chwialkowska, A.; High, L. R. H. J. Mater. Chem. 2004,
14, 2848-2851.
(3) Metzger, R. M. Chem. Phys. 2006, 326, 176-187.
(4) Metzger, R. M.; Chen, B.; Ho¨pfner, U.; Lakshmikantham, M. V.; Vuillaume,
D.; Kawai, T.; Wu, X.; Tachibana, H.; Hughes, T. V.; Sakurai, H.; Baldwin,
J. W.; Hosch, C.; Cava, M. P.; Brehmer, L.; Ashwell, G. J. J. Am. Chem.
Soc. 1997, 119, 10455-10466.
(14) Ashwell, G. J.; Berry, M. J. Mater. Chem. 2005, 15, 108-110.
(15) Ashwell, G. J.; Tyrrell, W. D.; Whittam, A. J. J. Am. Chem. Soc. 2005,
126, 7102-7110.
(16) Morales, G. M.; Jiang, P.; Yuan, S.; Lee, Y.; Sanchez, A.; You, W.; Yu,
L. J. Am. Chem. Soc. 2005, 127, 10456-10457.
(5) Metzger, R. M.; Xu, T.; Peterson, I. R. J. Phys. Chem. B 2001, 105, 7280-
(17) Nowak, A. M.; McCreery, R. L. J. Am. Chem. Soc. 2004, 126, 16621-
7290.
16631.
(6) Honciuc, A.; Otsuka, A.; Wang, Y.-H.; McElwee, S. K.; Woski, S. A.;
Saito, G.; Metzger, R. M. J. Phys. Chem. B 2006, 110, 15085-15093.
(7) Baldwin, J. W.; Amaresh, R. R.; Peterson, I. R.; Shumate, W. J.; Cava, M.
P.; Amiri, M. A.; Hamilton, R.; Ashwell, G. J.; Metzger, R. M. J. Phys.
Chem. B 2002, 106, 12158-12164.
(8) Metzger, R. M.; Baldwin, J. W.; Shumate, W. J.; Peterson, I. R.; Mani, P.;
Mankey, G. J.; Morris, T.; Szulczewski, G.; Bosi, S.; Prato, M.; Comito,
A.; Rubin, Y. J. Phys. Chem. B 2003, 107, 1021-1027.
(18) Jaiswal, A.; Tavakoli, C. G.; Zou, S. Anal. Chem. 2006, 78, 120-124.
(19) Krzeminski, C.; Delerue, C.; Allan, G.; Vuillaume, D.; Metzger, R. M.
Phys. ReV. 2001, B64, #085405.
(20) Gonzalez, C.; Manso-Simon, Y.; Batteas, J.; Marquez, M.; Ratner, M.;
Mujica, V. J. Phys. Chem. B 2004, 108, 18414-18420.
(21) Mujica, V.; Ratner, M. A.; Nitzan, A. Chem. Phys. 2002, 281, 147-150.
(22) Mujica, V.; Nitzan, A.; Datta, S.; Ratner, M. A.; Kubiak, C. P. J. Phys.
Chem. B 2003, 107, 91-95.
9
8310
J. AM. CHEM. SOC. 2007, 129, 8310-8319
10.1021/ja068729g CCC: $37.00 © 2007 American Chemical Society