Chemistry & Biology
Detecting the Lipid-Interacting Proteome
REFERENCES
Kuhlmann, J., Tebbe, A., Volkert, M., Wagner, M., Uwai, K., and Waldmann, H.
(2002). Photoactivatable synthetic Ras proteins: ‘‘baits’’ for the identification of
plasma-membrane-bound binding partners of Ras. Angew. Chem. Int. Ed.
Engl. 41, 2546–2550.
Ballell, L., Alink, K.J., Slijper, M., Versluis, C., Liskamp, R.M., and Pieters, R.J.
(2005).
A new chemical probe for proteomics of carbohydrate-binding
proteins. ChemBioChem 6, 291–295.
Lange, C., Nett, J.H., Trumpower, B.L., and Hunte, C. (2001). Specific roles of
protein-phospholipid interactions in the yeast cytochrome bc1 complex struc-
ture. EMBO J. 20, 6591–6600.
Berman, A., Shearing, L.N., Ng, K.F., Jinsart, W., Foley, M., and Tilley, L.
(1994). Photoaffinity labelling of Plasmodium falciparum proteins involved in
phospholipid transport. Mol. Biochem. Parasitol. 67, 235–243.
LeKim, D., Heidemann, G., and Betzing, H. (1979). Verfahren zur Demethylier-
ung von cholinhaltigen Phospholipiden. German patent DE 2728893.
Blonder, J., Conrads, T.P., and Veenstra, T.D. (2004). Characterization and
quantitation of membrane proteomes using multidimensional MS-based
proteomic technologies. Expert Rev. Proteomics 1, 153–163.
Liu, J., and Tor, Y. (2003). Simple conversion of aromatic amines into azides.
Org. Lett. 5, 2571–2572.
Brunner, J. (1993). New photolabeling and crosslinking methods. Annu. Rev.
Maas, E., and Bisswanger, H. (1990). Localization of the alpha-oxoacid dehy-
drogenase multienzyme complexes within the mitochondrion. FEBS Lett. 277,
189–190.
Biochem. 62, 483–514.
Chan, E.W., Chattopadhaya, S., Panicker, R.C., Huang, X., and Yao, S.Q.
(2004). Developing photoactive affinity probes for proteomic profiling: hydrox-
amate-based probes for metalloproteases. J. Am. Chem. Soc. 126, 14435–
14446.
Melo, A.M., Bandeiras, T.M., and Teixeira, M. (2004). New insights into
type II NAD(P)H:quinone oxidoreductases. Microbiol. Mol. Biol. Rev. 68,
603–616.
Delfino, J.M., Schreiber, S.L., and Richards, F.M. (1993). Design, synthesis,
and properties of a photoactivatable membrane-spanning phospholipidic
probe. J. Am. Chem. Soc. 115, 3458–3474.
Millar, A.H., Hill, S.A., and Leaver, C.J. (1999). Plant mitochondrial 2-oxogluta-
rate dehydrogenase complex: purification and characterization in potato.
Biochem. J. 343, 327–334.
Desneves, J., Berman, A., Dynon, K., La Greca, N., Foley, M., and Tilley, L.
(1996). Human erythrocyte band 7.2b is preferentially labeled by a photoreac-
tive phospholipid. Biochem. Biophys. Res. Commun. 224, 108–114.
Montecucco, C. (1988). Photoreactive lipids for the study of membrane-
penetrating toxins. Methods Enzymol. 165, 347–357.
Montecucco, C., Schiavo, G., Gao, Z., Bauerlein, E., Boquet, P., and Das-
Gupta, B.R. (1988). Interaction of botulinum and tetanus toxins with the lipid
bilayer surface. Biochem. J. 251, 379–383.
DiNitto, J.P., Cronin, T.C., and Lambright, D.G. (2003). Membrane recognition
and targeting by lipid-binding domains. Sci. STKE 2003, re16.
Dorman, G., and Prestwich, G.D. (1994). Benzophenone photophores in
Nesvizhskii, A.I., Keller, A., Kolker, E., and Aebersold, R. (2003). A statistical
model for identifying proteins by tandem mass spectrometry. Anal. Chem.
75, 4646–4658.
biochemistry. Biochemistry 33, 5661–5673.
Fisher, W.R., Taniuchi, H., and Anfinsen, C.B. (1973). On the role of heme in
the formation of the structure of cytochrome c. J. Biol. Chem. 248, 3188–
3195.
Palsdottir, H., and Hunte, C. (2004). Lipids in membrane protein structures.
Biochim. Biophys. Acta 1666, 2–18.
Gallet, P.F., Zachowski, A., Julien, R., Fellmann, P., Devaux, P.F., and Maftah,
A. (1999). Transbilayer movement and distribution of spin-labelled phospho-
lipids in the inner mitochondrial membrane. Biochim. Biophys. Acta 1418,
61–70.
Palsdottir, H., Lojero, C.G., Trumpower, B.L., and Hunte, C. (2003). Structure
of the yeast cytochrome bc1 complex with a hydroxyquinone anion Qo site
inhibitor bound. J. Biol. Chem. 278, 31303–31311.
Rijken, P.J., De Kruijff, B., and De Kroon, A.I. (2007). Phosphatidylcholine is
essential for efficient functioning of the mitochondrial glycerol-3-phosphate
dehydrogenase Gut2 in Saccharomyces cerevisiae. Mol. Membr. Biol. 24,
269–281.
Gao, Z., and Bauerlein, E. (1987). Identifying subunits of ATP synthase TF0.F1
in contact with phospholipid head groups, a-subunits are labelled selectively
by a new photoreactive phospholipid designed for hydrophilic photolabelling.
FEBS Lett. 223, 366–370.
Gubbens, J., Vader, P., Damen, J.M., O’Flaherty, M.C., Slijper, M., de Kruijff,
B., and de Kroon, A.I. (2007). Probing the membrane interface-interacting
proteome using photoactivatable lipid cross-linkers. J. Proteome Res. 6,
1951–1962.
Rostovtsev, V.V., Green, L.G., Fokin, V.V., and Sharpless, K.B. (2002). A
stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective
‘‘ligation’’ of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41,
2596–2599.
Hertmetter, A., Stutz, H., Franzmair, R., and Paltauf, F. (1989). 1-O-Trityl-
sno-glycero-3-phosphocholine: a new intermediate for the facile preparation
of mixed-acid 1,2-diacylglycerophosphocholines. Chem. Phys. Lipids 50,
57–62.
Rouser, G., Fleischer, S., and Yamamoto, A. (1970). Two dimensional thin layer
chromatographic separation of polar lipids and determination of phospholipids
by phosphorus analysis of spots. Lipids 5, 494–496.
Salisbury, C.M., and Cravatt, B.F. (2007). Click chemistry-led advances in high
Hoja, U., Marthol, S., Hofmann, J., Stegner, S., Schulz, R., Meier, S., Greiner,
E., and Schweizer, E. (2004). HFA1 encoding an organelle-specific acetyl-CoA
carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces
cerevisiae. J. Biol. Chem. 279, 21779–21786.
content functional proteomics. QSAR Comb. Sci. 26, 1229–1238.
Santoni, V., Molloy, M., and Rabilloud, T. (2000). Membrane proteins and
proteomics: un amour impossible? Electrophoresis 21, 1054–1070.
Shinzawa-Itoh, K., Aoyama, H., Muramoto, K., Terada, H., Kurauchi, T., Tade-
hara, Y., Yamasaki, A., Sugimura, T., Kurono, S., Tsujimoto, K., et al. (2007).
Structures and physiological roles of 13 integral lipids of bovine heart
cytochrome c oxidase. EMBO J. 26, 1713–1725.
Janssen, M.J., van Voorst, F., Ploeger, G.E., Larsen, P.M., Larsen, M.R., de
Kroon, A.I., and de Kruijff, B. (2002). Photolabeling identifies an interaction
between phosphatidylcholine and glycerol-3-phosphate dehydrogenase
(Gut2p) in yeast mitochondria. Biochemistry 41, 5702–5711.
Speers, A.E., and Cravatt, B.F. (2004). Profiling enzyme activities in vivo using
Jia, L., Dienhart, M., Schramp, M., McCauley, M., Hell, K., and Stuart, R.A.
(2003). Yeast Oxa1 interacts with mitochondrial ribosomes: the importance
of the C-terminal region of Oxa1. EMBO J. 22, 6438–6447.
click chemistry methods. Chem. Biol. 11, 535–546.
Szyrach, G., Ott, M., Bonnefoy, N., Neupert, W., and Herrmann, J.M. (2003).
Ribosome binding to the Oxa1 complex facilitates co-translational protein
insertion in mitochondria. EMBO J. 22, 6448–6457.
Jordi, W., and De Kruijff, B. (1996). Apo- and holocytochrome c-membrane
interactions. In Cytochrome C: A Multidisciplinary Approach, R.A. Scott
and A.G. Mauk, eds. (Sausalito, CA: University Science Books), pp. 449–
472.
Thiele, C., Hannah, M.J., Fahrenholz, F., and Huttner, W.B. (2000). Cholesterol
binds to synaptophysin and is required for biogenesis of synaptic vesicles.
Nat. Cell Biol. 2, 42–49.
Keller, A., Nesvizhskii, A.I., Kolker, E., and Aebersold, R. (2002). Empirical
statistical model to estimate the accuracy of peptide identifications made by
MS/MS and database search. Anal. Chem. 74, 5383–5392.
Tornøe, C.W., Christensen, C., and Meldal, M. (2002). Peptidotriazoles on
solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed
Chemistry & Biology 16, 3–14, January 30, 2009 ª2009 Elsevier Ltd All rights reserved 13