MA ET AL.
15 of 16
4
| CONCLUSIONS
In summary, we demonstrate a mild and reliable metal
precursor combination strategy for the synthesis of the
flexible acetone carbon and full advantage of impregna-
tion. The synthesis route in this experiment is a precursor
formed by acetone and urea to immobilize the metal
particles in space, which opens up a potential and advan-
tageous way to realize the carrier of acetone. In addition,
analysis of the experimental results and characterization
indicates that the optimal catalyst Cu/CuO@CN
REFERENCES
[
1] a) S. T. Aziz, R. U. Islam, Catal. Lett. 2017, 148, 205; b) Z.
Chen, R. Shen, C. Chen, J. Li, Y. Li, Chem. Commun. 2018,
54, 13155; c) T. P. Cheng, B. S. Liao, Y. H. Liu, S. M.
Peng, S. T. Liu, Dalton Trans. 2012, 41, 3468; d) T. de
Haro, C. Nevado, Chem. Commun. 2011, 47, 248; e) N.
Devarajan, M. Karthik, P. Suresh, Org. Biomol. Chem. 2017,
(8) realized the coupling of phenylacetylene to
1
,4-diphenylbutylene based on high conversion and
15, 9191; f) F. Farzaneh, E. Rashtizadeh, J. Iran. Chem.
excellent cycleability. Simultaneously, our model is also
applicable to the coupling of acetylene groups in several
alkynes, which have a remarkable catalytic effect on the
tested metals (Pd and Cu) under the optimal
reaction conditions. Nevertheless, the results exhibited
Cu/CuO@CN(8) of low-load metal have certain advan-
tages in this reaction, because it has the best affinity for
such compounds. Specifically, the incorporation of nitro-
gen into the carbon material can significantly enhance
the adsorption capacity of the catalyst. Besides, the out-
standing catalytic performance of Cu/CuO@CN(8) with a
low loading of Cu is also closely related to its large spe-
cific surface area, high porosity, exclusive porous struc-
ture, uniform distribution of Cu, CuO nanoparticles, and
low thermodynamic energy. Ultimately, this work pro-
vides novel insights into the surface recombination of
carbon-based acetone catalysts with high catalytic
activity.
Soc. 2016, 13, 1145.
[
2] a) W. Gao, S. Li, H. Huo, F. Li, Y. Yang, X. Li, X. Wang, Y.
Tang, R. Li, Mol. Catal. 2017, 439, 108; b) W. Guo, S. Niu, W.
Shi, B. Zhang, W. Yu, Y. Xie, X. Ji, Y. Wu, D. Su, L. Shao, Cat.
Sci. Technol. 2018, 8, 2333; c) Z. Jia, K. Wang, T. Li, B. Tan, Y.
Gu, Cat. Sci. Technol. 2016, 6, 4345.
[
3] a) B. Lai, Z. Huang, Z. Jia, R. Bai, Y. Gu, Cat. Sci. Technol.
2016, 6, 1810; b) A. S. Levashov, D. S. Buryi, O. V.
Goncharova, V. V. Konshin, V. V. Dotsenko, A. A. Andreev,
New J. Chem. 2017, 41, 2910; c) H. Li, M. Yang, Q. Pu, Micro-
por. Mesopor. Mater. 2012, 148, 166; d) S. Li, X. Chen, J. Chen,
H. Gong, B. Chem. Soc. Jpn. 2016, 89, 794; e) X. Li, X. Liu, H.
Chen, W. Wu, C. Qi, H. Jiang, Angew. Chem. Int. Ed. 2014, 53,
14485; f) G. Cahiez, A. Moyeux, J. Buendia, C. Duplais, J. Am.
Chem. Soc. 2007, 129, 13788.
[
4] a) X. Li, D. Li, Y. Bai, C. Zhang, H. Chang, W. Gao, W. Wei,
Tetrahedron 2016, 72, 6996; b) Q. Liu, L. Wu, R. Jackstell, M.
Beller, Nat. Commun. 2015, 6, 5933.
[
[
[
5] a) B. D. C. Glaser, 1896, 2, 422; b) A. S. Hay, J. Org. Chem.
1962, 27, 3320.
6] W. Lu, W. Sun, X. Tan, L. Gao, G. Zheng, Cat. Com. 2019,
125, 98.
7] a) C. Meng, K. Yang, X. Fu, R. Yuan, ACS Catal. 2015, 5, 3760;
CONFLICT OF INTEREST
The authors declare no competing financial interest.
ꢀ
b) S. B. Ötvös, A. Georgiádes, R. Mészáros, K. Kis, I. Pálinkó,
F. Fülöp, J. Catal. 2017, 348, 90; c) A. Sagadevan, V. P.
Charpe, K. C. Hwang, Cat. Sci. Technol. 2016, 6, 7688; d) X.-L.
Shi, Q. Hu, F. Wang, W. Zhang, P. Duan, J. Catal. 2016, 337,
AUTHOR CONTRIBUTIONS
Lei Ma: Conceptualization; data curation; formal analy-
sis; software; supervision; visualization. Pengbo Jiang:
Software. Kaizhi Wang: Software. Xiaokang Huang:
Software. Ming Yang: Software. Li Gong: Software.
Qi Jia: Software. Xiao Mu: Software. Yucong Xiong:
Software. Rong Li: Conceptualization; data curation; for-
mal analysis; resources; visualization.
233; e) A. Toledo, I. Funes-Ardoiz, F. Maseras, A. C. Albéniz,
ACS Catal. 2018, 8, 7495; f) S. Wang, D. Hu, W. Hua, J. Gu, Q.
Zhang, X. Jia, K. Xi, RSC Adv. 2015, 5, 53935.
[8] a) A. V. Zuraev, Y. V. Grigoriev, L. S. Ivashkevich, A. S.
Lyakhov, O. A. Ivashkevich, Z. Anorg. Allg. Chem. 2017,
643, 1215; b) B. S. Chinta, B. Baire, RSC Adv. 2016, 6,
54449; c) X. Jia, K. Yin, C. Li, J. Li, H. Bian, Green Chem.
2011, 13, 2175.
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are
available in the supporting information of this article.
[
9] a) S. Tang, L. Li, X. Ren, J. Li, G. Yang, H. Li, B. Yuan, Green
Chem. 2019, 21, 2899; b) Y. Jian, M. Chen, B. Huang, W. Jia,
C. Yang, W. Xia, Org. Lett. 2018, 20, 5370.
[
10] a) A. C. Uptmoor, J. Freudenberg, S. T. Schwabel, F.
Paulus, F. Rominger, F. Hinkel, U. H. Bunz, Angew. Chem.
Int. Ed. 2015, 54, 14673; b) K. Wang, P. Jiang, M. Yang, P.
Ma, J. Qin, X. Huang, L. Ma, R. Li, Green Chem. 2019, 21,
2
448; c) H. Xu, K. Wu, J. Tian, L. Zhu, X. Yao, Green
Chem. 2018, 20, 793.