enzymatic hydrolysis of an N-acyl derivative,10,11 or multi-
step stereospecific procedures.12 Flippin and co-workers13
reported a convenient procedure for the preparation of
stereoisomers of mexiletine, but the scope of products was
limited by the availability of chiral substrates and chromium
tricarbonyl complexes of aryl halides. Recently, optically
enriched (R)- and (S)-mexiletine was prepared by using
asymmetric reduction of oxime ethers and O-benzyl oximes
with borane-based catalysts.14
Scheme 1
.
Deracemization of rac-Mexiletine by a One-Pot
Two-Step Synthesis Procedure
Enzymes such as ω-transaminases have emerged as viable
biocatalysts for chiral amine preparation.15 ω-Transaminases
(ωTAs) can be used in two complementary ways, either (i)
in kinetic resolution of racemic amines with pyruvate as an
amine group acceptor or (ii) in the asymmetric synthesis from
ketones.16 We wish to report herein an deracemization
protocol for the synthesis of both enantiomers of mexiletine
employing ω-transaminases. Deracemization of amines via
dynamic kinetic resolution and cyclic deracemization are well
described.17 The deracemization protocol here is based on a
two-step one-pot process that consists of (i) a kinetic
resolution and (ii) a stereoselective amination employing
ω-transaminases (Scheme 1). Notably, the cosubstrate needed
in the first oxidation step (pyruvate) is recycled by an amino
acid oxidase18 (AAO). The advantage is that the formed
D-Ala or L-Ala in the kinetic resolution in the first step does
not interfere with the second step, where alanine of opposite
configuration is required. The deracemization approach
avoids the limitation of a kinetic resolution (50% of
conversion), thus leading to a theoretically quantitative yield
of optically pure amine starting with racemic amines by using
only a catalytic amount of amine acceptor pyruvate.
and from Vibrio fluVialis Vf-TA20) and four transaminases
described in the literature (from Bacillus megaterium BM-
ωTA,15e Alcaligenes denitrificans AD-ωTA,21 Chromobac-
terium Violaceum CV-ωTA,22 and a mutant termed CNB05-
01 originating from an Arthrobacter sp ArS-ωTA23) were
chosen as catalysts (Table 1). The four transaminases from
literature were used as a lyophilized whole-cell system
overexpressed in E. coli. The ω-transaminases catalyzed this
reaction efficiently giving the amine with up to >99% ee
with excellent enantioselectivity (E > 200). The important
point, however, was that transaminases ATA-113, Vf-ATA,
BM-ωTA, AD-ωTA, CV-ωTA, and ArS-ωTA showed (S)-
preference while ATA-117 displayed (R)-preference, thus
enantiocomplementary enzymes were available. This is
actually the precondition for the complete deracemization
sequence.
Testing first the kinetic resolution for racemic mexiletine,
three commercial ω-transaminases (ATA-113, ATA-117,19
In the kinetic resolution above a stoichiometric quantity
of pyruvate was applied, which could result in inhibition and
leads to accumulation of alanine. To avoid this, in situ
oxidation of alanine back to pyruvate by amino acid oxidase
(AAO) at the expense of molecular oxygen was considered.24
To find the most efficient system for the kinetic resolution
of rac-1 at 50 mM substrate concentration three enantio-
complementary amino acid oxidases (one D-AAO from
porcine kidney25 and two L-AAO from Crotalus adamanteus
and Crotalus atrox)26 were tested with the most interesting
transaminases employing only a catalytic amount of pyruvate
(2 mM; 4 mol %) (Table 2). For instance, rac-Mexiletine
was successfully resolved by ATA-117, giving the (S)-amine
with >99% ee at 53% conversion. When (S)-selective ω-TAs
(12) (a) Carocci, A.; Franchini, C.; Lentini, G.; Loiodice, F.; Tortorella,
V. Chirality 2000, 12, 103. (b) Carocci, A.; Catalano, A.; Corbo, F.; Duranti,
A.; Amoroso, R.; Franchini, C.; Lentini, G.; Tortorella, V. Tetrahedron:
Asymmetry 2000, 11, 3619.
(13) Loughhead, D. G.; Flippin, L. A.; Weikert, R. J. J. Org. Chem.
1999, 64, 3373.
(14) Huang, K.; Ortiz-Marciales, M.; Stepanenko, V.; De Jesus, M.;
Correa, W. J. Org. Chem. 2008, 73, 6928.
(15) (a) Hwang, B.-Y.; Cho, B.-K. H.; Koteshwar, Y. K.; Kim, B.-G. J.
Mol. Catal B: Enzym. 2005, 37, 47. (b) Kaulmann, U.; Smithies, K.; Smith,
M. E. B.; Hailes, H. C.; Ward, J. M. Enzyme Microbiol. Technol. 2007, 41,
628. (c) Yun, H.; Lim, S.; Cho, B.-K.; Kim, B.-G. Appl. EnViron. Microbiol.
2004, 70, 2529. (d) Ho¨hne, M.; Ku¨hl, S.; Robins, K.; Bornscheuer, U. T.
ChemBioChem. 2008, 9, 363. (e) Hanson, R. L.; Davis, B. L.; Chen, Y.;
Goldberg, S. L.; Parker, W. L.; Tully, T. P.; Montana, M. A.; Patel, R. N.
AdV. Synth. Catal. 2008, 350, 1367. (f) Koszelewski, D.; Clay, D.; Rozzell,
D.; Kroutil, W. Eur. J. Org. Chem. 2009, 2289.
(16) (a) Koszelewski, D.; Lavandera, I.; Clay, D.; Guebitz, G. M.;
Rozzell, D.; Kroutil, W. Angew. Chem., Int. Ed. 2008, 47, 9337. (b)
Koszelewski, D.; Lavandera, I.; Clay, D.; Rozzell, D.; Kroutil, W. AdV.
Synth. Catal. 2008, 350, 2761. (c) Truppo, M. D.; Rozzell, J. D.; Moore,
J. C.; Turner, N. J. Org. Biomol. Chem. 2009, 7, 395.
(20) Yun, H.; Cho, B.-K.; Kim, B.-G. Biotechnol. Bioeng. 2004, 87,
773.
(17) (a) Hoben, C. E.; Kanupp, L.; Ba¨ckvall, J.-E. Tetrahedron Lett.
2008, 49, 977. (b) Parvulescu, A. N.; De Vos, P. A. J. D. E. AdV. Synth.
Catal. 2008, 350, 113. (c) Parvulescu, A. N.; De Vos, P. A. J. D. E.
Chem.sEur. J. 2007, 13, 2034–2043. (d) Turner, N. J.; Carr, R. Biocatalysis
in the Pharmaceutical and Biotechnology Industries , Patel, R. N., Ed.;
CRC Press: Boca Raton, FL, 2007; p 743. (e) Thalen, L. K.; Zhao, D.;
Sortais, J.-B.; Paetzold, J.; Hoben, C.; Backvall, J.-E. Chem.sEur. J. 2009,
15, 3403.
(21) Yun, H.; Lim, S.; Cho, B.-K.; Kim, B.-G. Appl. EnViron. Microbiol.
2004, 70, 2529.
(22) Kaulmann, U.; Smithies, K.; Smith, M. E. B.; Hailes, H. C.; Ward,
J. M. Enzyme Microbiol. Technol. 2007, 41, 628.
(23) Pannuri, S.; Kamat, S. V.; Garcia, A. R. M. (Cambrex North
Brunswick Inc.) WO 2006/063336 A2, 2006 .
(24) Nakajima, N.; Esaki, N.; Soda, K. J. Chem. Soc., Chem. Commun.
1990, 947.
(18) Truppo, M. D.; Turner, N. J.; Rozzell, J. D. Chem. Commun. 2009,
2127.
(25) Pilone, M. S. Cell. Mol. Life Sci. 2000, 57, 1732.
(26) Servi, S.; Tessaroa, D.; Pedrocchi-Fantoni, G. Coord. Chem. ReV.
2008, 252, 715.
(19) ω-Transaminases 117 and 113 were purchased from Codexis Inc.
Org. Lett., Vol. 11, No. 21, 2009
4811