Chemistry - A European Journal
10.1002/chem.201801905
FULL PAPER
mode with probe size: spot 1.5 nm. EDX (Energy Dispersive X-ray
Spectrometry) and element mapping were performed on the JEOL
E F. Wilson, L. Cronin, Chem. Commun. 2009, 1297-1311; e) N. I.
Kapakoglou, B. I. Panagiotis, S. E. Kazianis, C. E. Kosmidis, C. Drouza,
M. J. Manos, M. P. Sigalas, A. D. Keramidas, T. A. Kabanos, Inorg.
Chem. 2007, 46, 6002-6010; f) J. D. Compain, P. Mialane, A. Dolbecq,
J. Marrot, A. Proust, K. Nakatani, P. Yu, F. Sécheresse, Inorg. Chem.
2
200FS using STEM mode.
2009, 48, 6222-6228.
[
2]
a) Chem. Rev. Special Thematic Issues, Polyoxometalates. 1998, 98,
Elemental energy dispersive X-ray analysis (EDX)
1-389; b) A. Proust, R. Thouvenot, P. Gouzerh, Chem. Commun. 2008,
16, 1837-1852; c) D. L. Long, E. Burkholder, L. Cronin, Chem. Soc.
Rev. 2007, 36, 105-121; d) D. Long, R. Tsunashima, L. Cronin, Angew.
Chem. Int. Ed. 2010, 49, 1736–1758; e) P. Mialane, A. Dolbecq, F.
Sécheresse, Chem. Commun. 2006, 33, 3477-3485; f) A. Dolbecq, E.
Dumas, C.R. Mayer, P. Mialane, Chem. Rev. 2010, 110, 6009-6048; g)
S. Nlate, C. Jahier, Eur. J. Inorg. Chem. 2013, 1606-1619.
The EDS was used to estimate the quantity of POM grafted on the silica
nanohelices. The atomic percentage of the tungsten W (L) and silicon Si
(
K), in the different samples was estimated by EDS. For each sample
several areas of the sample were studied and the average of percentage
of tungsten and silicon was calculated. % H 40 = % W/12; %Silica
% Si. To obtain the % of POM in weight, the molar percentage of POM
3
PW12O
[3]
[4]
a) M.T. Pope, A. Müller, Angew. Chem., Int. Ed. Engl. 1991, 30, 34-48;
b) J.T. Rhule, C.L. Hill, D.A. Judd, R.F. Schinazi, Chem. Rev. 1998, 98,
=
327-358; c) D. E. Katsoulis, Chem. Rev. 1998, 98, 359-388; d) M.T.
cluster was multiplied by its molar mass.
Pope, A. Müller (Eds.), Polyoxometalate Chemistry: From Topology via
Self-Assembly to Applications, Kluwer Academic, Dordrecht, 2001; e)
See for example
chemistry: L. Cronin and A. Müller guest editors, Chem. Soc. Rev. 2012,
1, 7325-7648.
a complete and review about polyoxometalates
Circular Dichroism measurements
4
Electronic circular dichroism (ECD) measurements were performed on a
Jasco J-815 CD spectrometer. The scan rate was 20 nm/min and 50
scans were applied to each sample. The concentration of hybrids applied
for these experiment was 0.2 mg/ml. All CD experiments were carried out
in Milli-Q water with a quartz cuvette (1cm path length) at 25˚C and with
stirring. The baseline corrections of the ECD spectra were performed by
subtracting the two opposite-enantiomers ECD spectra and divided by
two in case of silica nanohelices (L)-3 and (D)-3 and APTES
functionalized silica nanohelices (L)-4 and (D)-4. This baseline procedure
removes the experimental artefacts coming from the ECD spectrometer.
For the NANOPOM helices (L)-5 and (D)-5, the ECD spectra were
subtracted from the ECD spectra of the APTES functionalized silica
nanohelices.
a) S. Nlate, L. Plault, D. Astruc, Chem. Eur. J. 2006, 12, 903-914; b) C.
Jahier, F.-X. Felpin, C. Méliet, F. Agbossou-Niedercorn, J.-C.Hierso, S.
Nlate, Eur, J. Inorg.Chem. 2009, 5148-5155; c) I. V. Kozhevnikov,
Catalysis by heteropoly acids and multicomponent polyoxometalates in
liquid-phase reactions, Chem. Rev. 1998, 98, 171-198; d) F. Shahbazi,
K. Amani, Catal. Commun. 2014, 55, 57-64; e) C. L. Hill, C. M. Prosser-
McCartha, Homogeneous catalysis by transition-metal oxygen anion
clusters, Coord. Chem. Rev. 1995, 143, 407-455; f) N. Mizuno, M.
Misono, Heterogeneous catalysis, chem.Rev. 1998, 98, 199-218.
B. Hasenknopf, K. Micoine, E. Lacôte, S. Thorimbert, M. Malacria, R.
Thouvenot, Eur. J. Inorg. Chem. 2008, 5001-5013. (and reference
therein).
Y. Hou, X. Fang, C. L. Hill, Chem. Eur. J. 2007, 13, 9442-9447.
a) Q. Tang, S. Liu, Y. Liu, S. Li, F. Ma, J. Li, S. Wang, C. Liu, dalton
Trans. 2013, 42, 8512-8518 ; b) V. Kulikov, N. A. B. Johnson, A. J.
Surman, M. Hutin, S. M. Kelly, M. Hezwani, D-L. Long, G. Meyer, L.
Cronin, Angew. Chem. Int. Ed. 2017, 56, 1141-1145; c) J. Zhang, W. Li,
C. Wu, B. Li, J. Zhang, L. Wu, Chem. Eur. J. 2013, 19, 8129-8135.
a) J. Cheng, G. Le Saux, J. Gao, T. Buffeteau, Y. Battie, P. Barois, V.
Ponsinet, M.-H. Delville, O. Ersen, E. Pouget, R. Oda, ACS Nano, 2017,
11, 3806-3818; b) R. Tamoto, S. lecomte, S. Si, S. Moldovan, O. Ersen,
M.-H. L. N. Delville, R. Oda.,J. Phys. Chem., C 2012, 116, 23143-
[
5]
[
[
6]
7]
General procedure for catalytic reactions and catalyst recycling
[
[
8]
9]
The Silica NANOPOM catalyst was dispersed in acetonitrile (1 mL) and
the sulfide (500 equiv) was added to the mixture. An aqueous solution of
H O (35% in water, 550 equiv) was added to the reaction mixture at the
2 2
appropriate temperature. The latter was stirred and monitored by 1H
NMR spectroscopy. Upon completion of the reaction, the catalyst was
separated from the medium by centrifugation and washed with ethanol
23152; c) S. H. Jung, J. Jeon, H. Kim, J. Jaworski, J. H. Jung. J. Am.
Chem. Soc. 2014, 136, 6446-6452.
a) S. Yu-Lut Leung, V. Wing-Wah Yam, Chem. Sci., 2013, 4, 4228-
4234; b) Y. Tadesse, R. W. Grange, HS. Priva. Smart Mater. Struct.18,
2009, 085008; c) A. Goswami, S. Sengupta, R. Mondal,
CrystEngComm, 2012, 14, 561-572.
(3x5 mL) and water (3x5 mL). The recovered catalyst was freeze dried,
[
[
[
10] S. Guha, M. G. Drew, A. Banerjee, Small, 2008, 4, 1993-2005
11] J. Liu, L. Yang, Z. Huang, Small, 2016, 12, 5902-5909.
12] T. ꢀelclos,C. ꢁimꢂ, E. Pouget, A. Brizard, I. Huc, M.-H. Delville, R.
Oda, Nano. Lett. 2008, 8, 1929-1935.
[13] S. Q. Liu, Z. Y. Tang, Nano Today, 2010, 5, 267-281.
[14] a) E. Rafiee, S. Eavani, J. Mol. Catal. A: Chem., 2013, 373, 30-37; b) N.
G. Kostova, A. A. Spojakina, K. Jiratova, O. Solcova, L. D. Dimitrov, L.
A. Petrov, Catal. Today, 2001, 65, 217-223; c) K. Nowinska, W. Kaleta,
Appl. Catal. A, 2000, 203, 91-100.
and then analysed by UV visible spectroscopy, Raman spectroscopy and
TEM before its use in a new catalytic experiment. The enantiomeric
excess were determined by chiral HPLC using Chiracel ASH column and
UV detector (254 nm), eluting with hexane/2-propanol (1:1) at a flow of
-
1
0
1
.5 mL.min . Retention time: (R)-9: 21.4; (S)-9: 31.2; (R)-10: 22.5; (S)-
0: 30.9.
[
15] a) M. Lu, J. H. Kang, D. G. Wang, Z. H. Peng, Inorg. Chem., 2005, 44,
711-7713; b) M. Carraro, G. Modugno, A. Sartorel, G. Scorrano, M.
Acknowledgements
7
Bonchio, Eur. J. Inorg. Chem, 2009, 34, 5164-5174 .
[
16] a) L. Yue, H. Ai, Y. Yang, W. Lu, L. Wu, Chem. Commun., 2013, 49,
Financial support from the University of Bordeaux and the
CNRS is gratefully knowledged. We thank IECB technology
platforms and S. Tan, M. Decossas and E. Morvan (CBMN) for
TEM and P NMR experiments, S. Buffière (ICMCB, CNRS)
and Placamat platform for HR-TEM and EDX measurements.
9770-9772; b) B. Zhang, L. Yue, Y. Wang, Y. Yang, L. Wu, Chem.
Commun., 2014, 50, 10823-10826; c) B. Zhang, W. Guan, F. Yin, J.
Wang, B. Li, L. Wu, Dalton Trans., 2018, 1388-1392.
[
17] a) J. F. Keggin, Nature, 1933, 131, 908-909; b) J. W. Illingworth, J. F.
Keggin, J. Chem. Soc, 1935, 575-580; c) C. Jahier, S. S. Mal, R. Al-
Oweini, U. Kortz, S. Nlate, Polyhedron, 2013, 57, 57-63.
31
[
18] S. Manet, Y. Karpichev, D. Bassani, R. Kiagus-Ahmad, R. Oda,
Langmuir 2010, 26, 10645-10656.
Keywords: polyoxometalate • silica nanohelices • circular
dichroism • chirality induction • oxidation
[19] E. Grinenval, X. Rozanska, A. Baudoin, E. Berrier, F. Delbecq, P.
Sautet, J.-M. Basset, F. Lefebvre, J. Phys. Chem. C 2010, 114, 19024-
19034.
[
20] a) H. Nair, J. T. Miller, E. A. Stach, C. D. Baertsch, J. Catal. 2010, 270,
4
0-47; b) L. Shi, Y. Wang, B. Li, L. Wu, Dalton Trans. 2014, 43, 9177-
[
1]
a) C. M. Tourné, G. Tourné, F. Zonnevijlle, J. Chem. Soc. Dalton Trans,
9188.
1991, 143-155; b) T. Ama, J. Hidaka, Y. Shimura, Bull. Chem. Soc. Jpn.
970, 43, 2654-2654; c) C. C. Jiang, Y. G. Wei, Q. Liu, S. W. Zhang, M.
1
C. Shao, Y. Q. Tang, Chem. Commun. 1998, 1937-1938; d) H. N. Miras,
This article is protected by copyright. All rights reserved.