R.M. Issa et al. / Spectrochimica Acta Part A 62 (2005) 621–629
629
the occurrence of the keto–enol tautomerism. The calcu-
lated and experimental wavelengths are equal to 302.18
and 301 nm, respectively.
[19] A. Reisey, L.J. Leyshon, D. Saundevs, M.V. Mijavic, A. Bright, J.
Bogie, J. Am. Chem. Soc. 94 (1972) 2414.
[20] F.A. Masten, J. Chem. Phys. 24 (1958) 602.
[21] R.S. Becker, W.F. Wentworth, J. Am. Chem. Soc. 84 (1962) 4263;
R.S. Becker, W.F. Wentworth, J. Am. Chem. Soc. 85 (1963)
2210.
[22] C.D. Wheast, Hand Book of Chemistry and Physics, 50th ed., The
Chemical Rubber Company, Ohio, USA, 1969.
[23] L. Gati, L. Szalay, Acta Phys. Chem. 5 (1959) 87.
[24] P. Suppan, J. Chem. Soc. 2 (1968) 3125.
[25] M.J. Kamlet, R.W. Taft, J. Am. Chem. Soc. 98 (1976) 377.
[26] E.M. Kosower, J. Am. Chem. Soc. 78 (1956) 5700.
[27] E.G. Brame, Applied Spectroscopy Reviews, vol. 8, Marcel Dekker,
New York, 1974, p. 194.
[28] R.M. Issa, J.Y. Maghrabi, Z. Phys. Chem. (Leipzig) 56 (1975) 1120.
[29] R.M. Issa, Egypt J. Chem. 14 (1971) 133.
3. The third electronic transition is a –*(Ar) transition
with greater coefficients on C1, C5, C6, C10 and C11 atoms
with an energy and wavelength equal to 5.2266 eV and
237.06 nm, respectively (exp. value = 234 nm).
4. The highest energy excitation (5.8482 eV) corresponds to
another –*(Ar) transition which could be described by
an electron excitation from the level at 15.2645 eV, signif-
icantly characterized by the coefficients of C1, C4, C7, C8
and C9 atoms to LUMO level with complete * character.
The calculated wavelength (211.80 nm) is nearly equal to
experimental value (212 nm).
[30] T. Forster, Z. Elektochem. (Ber. Bunsengesell. Physiki Chem.) 54
(1950) 43.
[31] J.H. Yoe, A.L. Jones, Ind. Eng. Chem. Anal. 16 (1944) 111.
[32] P. Jop, Ann. Chim. 9 (1928) 113.
[33] R.M. Issa, et al., Egypt J. Chem. 15 (1972) 417;
R.M. Issa, et al., Egypt J. Chem. 1 (1975) 18;
References
[1] H.H. Jafe, S.J. Yeh, R.W. Gardner, J. Mol. Spectrosc. 2 (1958) 120.
[2] P. Teyssie, J.J. Charette, Spectrochim. Acta 19 (1963) 1407.
[3] S.R. Salman, A.A.K. Mahmoud, Spectrosc. Lett. 31 (1998) 1557.
[4] R. Herzfeld, P. Nagy, Spectrosc. Lett. 32 (1999) 57.
[5] G.O. Dudek, F.P. Dudek, J. Am. Chem. Soc. 88 (1966) 2407.
[6] M.D. Cohen, S. Flavian, J. Chem. Soc. (B) 317 (1967).
[7] C.A. Mc Auliffe, R.V. Parish, S.M. Abu-El-Wafa, R.M. Issa, Inorg.
Chim. Acta 115 (1986) 91.
[8] S.M. Abu-El-Wafa, R.M. Issa, Bull. Soc. Chim. Fr. 128 (1991) 805.
[9] T. Maki, H. Hashimato, Bull. Chem. Soc. Jpn. 25 (1952) 411;
T. Maki, H. Hashimato, Bull. Chem. Soc. Jpn. 27 (1954) 602.
[10] K. Yoshiyo, Kikuchi, Hikain Nippon Kagoku Kaishi Jpn (ir) 1524
(1979).
R.M. Issa, et al., Z. Physik. Chem. (Frankfurt) 117 (1972) 251;
R.M. Issa, et al., Z. Physik. Chem. (Leipzig) 253 (1973) 289.
[34] Y.K. Bhoon, Polyhedron 2 (1983) 365.
[35] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Com-
pounds, Wiley/Interscience, New York, 1973.
[36] S.F. Tan, K.P. Ang, H.L. Jayachandran, Trans. Met. Chem. 9 (1984)
390.
[37] M. Kato, J.C. Fanning, H.B. Jonassen, Chem. Rev. 64 (1964) 99.
[38] F.A. Cotton, J. Lewis, R.G. Wilkinson, Modern Coordination Chem-
istry, New York, 1960.
[39] W.J. Geary, J. Coord. Chem. Rev. 7 (1971).
[40] I. Fidon, K.W.H. Stevens, Proc. Phys. Soc. (London) 11 (1959) 73.
[41] A.B. Anderson, J. Chem. Phys. 62 (1975) 1187.
[42] A.B. Anderson, R.W. Grimes, S.Y. Hong, J. Phys. Chem. 91 (1987)
4245.
[11] S. Papie, N. Kaprivanae, Z. Grabarie, D. Paracosterman, Dyes Pig-
ments 25 (1994) 229.
[12] C.P. Prabhakaran, C.C. Patal, J. Inorg. Nucl. Chem. 31 (1969) 3316.
[13] M.R. Mahmoud, M.T. El-Haty, J. Inorg. Nucl. Chem. 42 (1980) 349.
[14] Z. Cimerman, S. Miljanic, J. Antolic, Spectrosc. Lett. 33 (1999) 181.
[15] H.D. Saw, J. Am. Chem. Soc. 101 (1967) 154.
[16] W.H. Melhuish, J. Phys. Chem. 65 (1961) 229.
[17] G. Briegleb, H. Delle, Z. Electrochem. (Ber. Bausengesell. Physiki
Chem.) 64 (1960) 347;
G. Briegleb, H. Delle, Z. Physiki Chem. (Frankfurt) 24 (1960) 359.
[18] W. Bruynel, T.J. Charette, E. De Hoffman, J. Am. Chem. Soc. 88
(1966) 3808.
[43] S.T. Abd El-Halim, M.K. Awad, J. Phys. Chem. 97 (1993) 3160.
[44] M.K. Awad, A. Shehata, A. El-Dissouki, Trans. Met. Chem. 20
(1993) 6.
[45] M.K. Awad, Polym. Degrad. Stab. 49 (1995) 339.
[46] M.K. Awad, M. Habeeb, J. Mol. Struct. 378 (1996) 103.
[47] M.K. Awad, J. Mol. Struct. (Theochem) 505 (2000) 185.
[48] M.K. Awad, F. Mahgoob, M. El-iskandrani, J. Mol. Struct.
(Theochem) 531 (2000) 105.
[49] W. Lotz, J. Opt. Soc. Am. 60 (1970) 206.
[50] I. Clementi, D.L. Raimondi, J. Chem. Phys. 38 (1963) 2680.