Angewandte
Chemie
Me Fc þ TolSQ þ His Á 2 H !Me Fc þ TolSQ =His Á 2 Hþ
þ
ket
þ
Cꢀ
ð3Þ
2
2
[9] K. Morokuma, Acc. Chem. Res. 1977, 10, 294 – 300.
10] H. Ishikita, G. Morra, E.-W. Knapp, Biochemistry 2003, 42,
882 – 3892.
[11] For effects of hydrogen bonding on Ered of quinones, see: a) K.
Okamoto, K. Ohkubo, K. M. Kadish, S. Fukuzumi, J. Phys.
Chem. A 2004, 108, 10405 – 10413; b) Y. Ge, R. R. Lilienthal,
D. K. Smith, J. Am. Chem. Soc. 1996, 118, 3976 – 3977; c) N. A.
Macias-Ruvalcaba, N. Okumura, D. H. Evans, J. Phys. Chem. B
2006, 110, 22043 – 22047; d) N. Gupta, H. Linschitz, J. Am.
Chem. Soc. 1997, 119, 6384 – 6391.
[12] For effects of hydrogen bonding on ET reduction of quinones,
see: a) S. Fukuzumi, H. Kitaguchi, T. Suenobu, S. Ogo, Chem.
Commun. 2002, 1984 – 1985; b) S. Fukuzumi, K. Okamoto, Y.
Yoshida, H. Imahori, Y. Araki, O. Ito, J. Am. Chem. Soc. 2003,
125, 1007 – 1013.
[
3
The ET rates obeyed pseudo-first-order kinetics in the
presence of a large excess TolSQ and His·2H relative to the
concentration of Me Fc (see the first-order plot in the
Supporting Information). The observed pseudo-first-order
rate constant kobs increases proportionally with increasing
+
2
TolSQ concentration. The second-order rate constant k also
increases linearly with [His·2H ] (Figure 2d).
et
+
+
Since His·2H has no effect on the oxidation potential of
Me Fc, the free-energy change of ET from Me Fc to TolSQ in
2
2
+
the presence of His·2H (DG ) can be expressed by
et
0
Equation (4), where DG is the free-energy change in the
et
[
13] For effects of hydrogen bonding on proton-coupled electron
transfer (PCET), see: a) I. J. Rhile, T. F. Markle, H. Nagao, A. G.
DiPasquale, O. P. Lam, M. A. Lockwood, K. Rotter, J. M.
Mayer, J. Am. Chem. Soc. 2006, 128, 6075 – 6088; b) I. J. Rhile,
J. M. Mayer, J. Am. Chem. Soc. 2004, 126, 12718 – 12719; c) A.
Niemz, V. M. Rotello, Acc. Chem. Res. 1999, 32, 44 – 52; d) M.
Gray, A. O. Cuello, G. Cooke, V. M. Rotello, J. Am. Chem. Soc.
2003, 125, 7882 – 7888.
0
et
þ
DGet ¼ DG ꢀð2:3 R T=FÞlog fK ½His Á 2 H g
ð4Þ
red
+
absence of His·2H . Such a change in DGet has previously
been reported for metal-ion-promoted ET from Fc to the
naphthoquinone (NQ) moiety of a ferrocene–naphthoqui-
[
23]
none (Fc–NQ) linked dyad.
metal-ion-promoted ET on driving force is well evaluated in
The dependence of ket of
[14] For fast proton transfer from proton donor to semiquinone
radical anions, see: C. G. Schaefer, K. S. Peters, J. Am. Chem.
Soc. 1980, 102, 7566 – 7567.
[
24]
terms of the Marcus theory of electron transfer when the ket
value increases linearly with increasing metal ion concen-
[
23]
+
[15] It has been suggested that His-H126 and His-H128 near Q
B
tration. In the case of His·2H too, the k value increases
et
facilitate proton transfer into the RC: a) M. L. Paddock, M. S.
Graige, G. Feher, M. Y. Okamura, Proc. Natl. Acad. Sci. USA
+
linearly with [His·2H ] (Figure 2d).
In summary, we have detected a hydrogen-bonded com-
plex of a semiquinone radical anion with protonated histidine
1
999, 96, 6183 – 6188; b) P. ꢁdelroth, M. L. Paddock, A. Tehrani,
J. T. Beatty, G. Feher, M. Y. Okamura, Biochemistry 2001, 40,
14538 – 14546.
ꢀ
+
(
TolSQC /His·2H ) by EPR, which reveals strong hydrogen
ꢀ
+
[16] Although His is difficult to dissolve in MeCN, it becomes soluble
in MeCN in the presence of 2 equiv of HClO4.
17] a) S. Fukuzumi, T. Kitano, K. Mochida, J. Am. Chem. Soc. 1990,
bonding between TolSQC and His·2H . This finding provides
valuable insight into the specific function of quinones in the
photosynthetic RC. Strong hydrogen bonding between semi-
quinone radical anion and protonated amino acid residues
would result in a positive shift in the one-electron reduction
potential of quinones and facilitate the ET reduction of
quinones in the RC.
[
1
9
12, 3246 – 3247; b) S. Fukuzumi, Y. Tokuda, J. Phys. Chem. 1992,
6, 8409 – 8413.
[18] J. Yuasa, S. Yamada, S. Fukuzumi, J. Am. Chem. Soc. 2006, 128,
14938 – 14948.
ꢀ
+
[
19] The smaller g value of TolSQC /His·2H compared to TolSQCꢀ
(2.0057) indicates that the spin density on oxygen nuclei in
ꢀ
TolSQC is reduced significantly due to strong hydrogen bonding
with His·2H .
Received: January 12, 2007
Published online: March 30, 2007
+
[
[
20] The hfc values of semiquinone radical (QHC) calculated by using
BLYP methods were in good agreement with experimental data:
M. Nonella, J. Phys. Chem. B 1997, 101, 1235 – 1246.
Keywords: amino acids · electron transfer · EPR spectroscopy ·
.
hydrogen bonds · quinones
+
21] The hydrogen-bonded proton of NH is not covalently bound to
3
TolSQCꢀ but electrostatically bound to TolSQC through the
ꢀ
+
hydrogen bond. The NꢀH bond length in NH (1.57 ꢂ) is longer
3
+
3
[
1] Functions of Quinones in Energy Conserving Systems (Ed.: B. I.
Trumpower), Academic Press, New York, 1986.
than that between the NH proton and the C=O oxygen atom of
TolSQCꢀ (1.05 ꢂ) in the optimized structure of TolSQC /His·2H
ꢀ
+
[
2] The Photosynthetic Bacterial Reaction Center—Structure and
Dynamics (Eds.: J. Breton, H. Vermeglio), Plenum, New York,
(see the Supporting Information). This indicates that binding of
+
3
the NꢀH bond in NH is significantly weakened by formation of
ꢀ
1988.
strong hydrogen bonds with TolSQC . The presence of the strong
[
[
3] G. Feher, R. A. Isaacson, M. Y. Okamura, W. Lubitzin Antennas
and Reaction Centers of Photosynthetic Bacteria (Ed.: M. E.
Michel-Beyerle), Springer, Berlin, 1985, pp. 174 – 189.
4] P. J. OꢀMalley, T. K. Chandrashekar, G. T. Babcock in Antennas
and Reaction Centers of Photosynthetic Bacteria (Ed.: M. E.
Michel-Beyerle), Springer, Berlin, 1985, pp. 339 – 344.
hydrogen bond is supported by the existence of superhyperfine
coupling due to the hydrogen-bonded protons and nitrogen atom
+
of NH3 (Figure 1).
ꢀ
+
[22] The calculated hfc values of TolSQC /His·2H agree well with the
observed hfc values within the errors due to the imperfect
density functional method (BLYP/6-31G**).
[
[
5] E. Takahashi, C. A. Wraight, Biochemistry 1992, 31, 855 – 866.
6] M. L. Paddock, S. H. Rongey, G. Feher, M. Y. Okamura, Proc.
Natl. Acad. Sci. USA 1989, 86, 6602 – 6606.
7] P. ꢁdelroth, M. L. Paddock, L. B. Sagle, G. Feher, M. Y.
Okamura, Proc. Natl. Acad. Sci. USA 2000, 97, 13086 – 13091.
8] a) P. J. OꢀMalley, J. Am. Chem. Soc. 1998, 120, 5093 – 5097;
b) P. J. OꢀMalley, J. Phys. Chem. A 1998, 102, 248 – 253.
[23] K. Okamoto, H. Imahori, S. Fukuzumi, J. Am. Chem. Soc. 2003,
125, 7014 – 7021.
[24] R. A. Marcus, Angew. Chem. 1993, 105, 1161 – 1172; Angew.
Chem. Int. Ed. Engl. 1993, 32, 1111 – 1121.
[
[
Angew. Chem. Int. Ed. 2007, 46, 3553 –3555
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3555