Inorganic Chemistry
Article
of Ag-Cu Nanoparticles. Phys. Chem. Chem. Phys. 2015, 17 (42),
28277−28285.
(22) Wang, L.; Xie, H.; Tian, Z.; Zhu, L.; Bing, N.; Wang, L. One-
Step Solution Synthesis of Ag-Cu Nanoalloys. In 2010 Symposium on
Photonics and Optoelectronics; IEEE: 2010; pp 1−4.
̈
̈
(3) Pawlow, P. Uber Die Abhangigkeit Des Schmelzpunktes von Der
́
(23) Mourdikoudis, S.; Liz-Marzan, L. M. Oleylamine in Nano-
̈
̈
Oberflachenenergie Eines Festen Korpers. Z. Phys. Chem. 1909, 65U,
1−35.
particle Synthesis. Chem. Mater. 2013, 25 (9), 1465−1476.
(24) Sopousek, J.; Pinkas, J.; Broz, P.; Bursik, J.; Vykoukal, V.;
Skoda, D.; Styskalik, A.; Zobac, O.; Vrestal, J.; Hrdlicka, A.; Simbera,
J. Ag-Cu Colloid Synthesis: Bimetallic Nanoparticle Characterisation
and Thermal Treatment. J. Nanomater. 2014, 2014, 1−13.
(25) Sopousek, J.; Zobac, O.; Vykoukal, V.; Bursik, J.; Roupcova, P.;
Broz, P.; Pinkas, J.; Vrestal, J. Temperature Stability of AgCu
Nanoparticles. J. Nanopart. Res. 2015, 17, 478.
(26) Sharma, S.; Gajbhiye, N. S.; Ningthoujam, R. S. Synthesis and
Self-Assembly of Monodisperse CoxNi100‑x (X = 50,80) Colloidal
Nanoparticles by Homogenous Nucleation. J. Colloid Interface Sci.
2010, 351 (2), 323−329.
(27) Wang, C.; Yin, H.; Chan, R.; Peng, S.; Dai, S.; Sun, S. One-Pot
Synthesis of Oleylamine Coated AuAg Alloy NPs and Their Catalysis
for CO Oxidation. Chem. Mater. 2009, 21 (3), 433−435.
(28) Xu, Z.; Lai, E.; Shao-Horn, Y.; Hamad-Schifferli, K.
Compositional Dependence of the Stability of AuCu Alloy Nano-
particles. Chem. Commun. 2012, 48 (45), 5626−5628.
(29) Sopousek, J.; Zobac, O.; Vykoukal, V.; Bursik, J.; Roupcova, P.;
Broz, P.; Pinkas, J.; Vrestal, J. Temperature Stability of AgCu
Nanoparticles. J. Nanopart. Res. 2015, 17 (12), 478−484.
(30) Choi, J.; Kim, M. J.; Ahn, S. H.; Choi, I.; Jang, J. H.; Ham, Y. S.;
Kim, J. J.; Kim, S.-K. Electrochemical CO2 Reduction to CO on
Dendritic Ag-Cu Electrocatalysts Prepared by Electrodeposition.
Chem. Eng. J. 2016, 299, 37−44.
(31) Kim, C. K.; Lee, G.-J.; Lee, M. K.; Rhee, C. K. A Novel Method
to Prepare Cu@Ag Core-shell Nanoparticles for Printed Flexible
Electronics. Powder Technol. 2014, 263, 1−6.
(4) Takagi, M. Electron-Diffraction Study of Liquid-Solid Transition
of Thin Metal Films. J. Phys. Soc. Jpn. 1954, 9 (3), 359−363.
(5) Srivastava, C.; Chithra, S.; Malviya, K. D.; Sinha, S. K.;
Chattopadhyay, K. Size Dependent Microstructure for Ag-Ni
Nanoparticles. Acta Mater. 2011, 59 (16), 6501−6509.
(6) Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang,
X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S. Cu and Cu-Based
Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev.
2016, 116 (6), 3722−3811.
(7) Zhang, Y.; Huang, W.; Habas, S. E.; Kuhn, J. N.; Grass, M. E.;
Yamada, Y.; Yang, P.; Somorjai, G. A. Near-Monodisperse Ni-Cu
Bimetallic Nanocrystals of Variable Composition: Controlled Syn-
thesis and Catalytic Activity for H2 Generation. J. Phys. Chem. C 2008,
112 (32), 12092−12095.
(8) Guterman, V. E.; Belenov, S. V.; Pakharev, A. Y.; Min, M.;
Tabachkova, N. Y.; Mikheykina, E. B.; Vysochina, L. L.; Lastovina, T.
A. Pt-M/C (M = Cu, Ag) Electrocatalysts with an Inhomogeneous
Distribution of Metals in the Nanoparticles. Int. J. Hydrogen Energy
2016, 41 (3), 1609−1626.
(9) Zopes, D.; Hegemann, C.; Tyrra, W.; Mathur, S.
[(CF3)4Au2(C5H5N)2] - a New Alkyl Gold(II) Derivative with a
Very Short Au-Au Bond. Chem. Commun. 2012, 48 (70), 8805.
(10) Zopes, D.; Stein, B.; Mathur, S.; Graf, C. Improved Stability of
“Naked” Gold Nanoparticles Enabled by in Situ Coating with Mono
and Multivalent Thiol PEG Ligands. Langmuir 2013, 29 (36),
11217−11226.
(11) Zopes, D.; Kremer, S.; Scherer, H.; Belkoura, L.; Pantenburg, I.;
Tyrra, W.; Mathur, S. Hydrolytic Decomposition of Tetramethylam-
monium Bis(Trifluoromethyl)Aurate(I), [NMe4][Au(CF3)2]: A
Route for the Synthesis of Gold Nanoparticles in Aqueous Medium.
Eur. J. Inorg. Chem. 2011, 2011 (2), 273−280.
(32) Taner, M.; Sayar, N.; Yulug, I. G.; Suzer, S. Synthesis,
Characterization and Antibacterial Investigation of Silver-copper
Nanoalloys. J. Mater. Chem. 2011, 21 (35), 13150−13154.
(33) Wakuda, D.; Kim, K.; Suganuma, K. Room Temperature
Sintering of Ag Nanoparticles by Drying Solvent. Scr. Mater. 2008, 59
(6), 649−652.
̈
(12) Zopes, D.; Hegemann, C.; Schlafer, J.; Tyrra, W.; Mathur, S.
Single-Source Precursors for Alloyed Gold-Silver Nanocrystals - A
Molecular Metallurgy Approach. Inorg. Chem. 2015, 54 (8), 3781−
3787.
(34) Pfeiffer, P.; v. Mullenheim, S. Zur Theorie Der Metal-
̈
lhydrationen, II. J. Prakt. Chem. 1933, 137 (1−3), 9−26.
(35) Prout, C. K.; Carruthers, J. R.; Rossotti, F. J. C. Structure and
Stability of Carboxylate Complexes. Part IX. Crystal and Molecular
Structure of Copper(II) Phthalate Monohydrate. J. Chem. Soc. A
1971, 3350−3354.
(13) Kahani, S. A.; Shahrokh, M. Synthesis of CuxNi1‑x Alloy
Nanoparticles from Double Complex Salts and Investigation of Their
Magnetoimpedance Effects. RSC Adv. 2015, 5 (88), 71601−71607.
(14) Cotton, F. A.; Goodgame, D. M. L. Tetrakis-
(Triphenylphosphine)- Silver(I) and -Copper(I) Complexes. J.
Chem. Soc. 1960, 5267−5269.
(15) Hammond, B.; Jardine, F. H.; Vohra, A. G. Carboxylatocopper-
(I) Complexes. J. Inorg. Nucl. Chem. 1971, 33 (4), 1017−1024.
(16) Jardine, F. H.; Vohra, A. G.; Young, F. J. Copper(I) Nitrato and
Nitrate Complexes. J. Inorg. Nucl. Chem. 1971, 33 (9), 2941−2945.
(17) Richards, V. N.; Rath, N. P.; Buhro, W. E. Pathway from a
Molecular Precursor to Silver Nanoparticles: The Prominent Role of
Aggregative Growth. Chem. Mater. 2010, 22 (11), 3556−3567.
(36) Nam, K. M.; Shim, J. H.; Ki, H.; Choi, S.-I.; Lee, G.; Jang, J. K.;
Jo, Y.; Jung, M.-H.; Song, H.; Park, J. T. Single-Crystalline Hollow
Face-Centered-Cubic Cobalt Nanoparticles from Solid Face-Cen-
tered-Cubic Cobalt Oxide Nanoparticles. Angew. Chem., Int. Ed. 2008,
47 (49), 9504−9508.
(37) Hou, B.; Benito-Alifonso, D.; Kattan, N.; Cherns, D.; Galan, M.
C.; Fermín, D. J. Initial Stages in the Formation of Cu2ZnSn(S,Se)4
Nanoparticles. Chem. - Eur. J. 2013, 19 (47), 15847−15851.
(38) Chen, M.; Feng, Y.-G.; Wang, X.; Li, T.-C.; Zhang, J.-Y.; Qian,
D.-J. Silver Nanoparticles Capped by Oleylamine: Formation,
Growth, and Self-Organization. Langmuir 2007, 23 (10), 5296−5304.
(39) He, M.; Protesescu, L.; Caputo, R.; Krumeich, F.; Kovalenko,
M. V. A General Synthesis Strategy for Monodisperse Metallic and
Metalloid Nanoparticles (In, Ga, Bi, Sb, Zn, Cu, Sn, and Their Alloys)
via in Situ Formed Metal Long-Chain Amides. Chem. Mater. 2015, 27
(2), 635−647.
(40) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.;
McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de
Streek, J.; Wood, P. A. Mercury CSD 2.0 - New Features for the
Visualization and Investigation of Crystal Structures. J. Appl.
Crystallogr. 2008, 41 (2), 466−470.
(41) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.
K.; Puschmann, H. OLEX2: A Complete Structure Solution,
Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42 (2),
339−341.
̈
̈
(18) Adner, D.; Mockel, S.; Korb, M.; Buschbeck, R.; Ruffer, T.;
Schulze, S.; Mertens, L.; Hietschold, M.; Mehring, M.; Lang, H.
Copper(II) and Triphenylphosphine Copper(I) Ethylene Glycol
Carboxylates: Synthesis, Characterisation and Copper Nanoparticle
Generation. Dalton Trans 2013, 42 (44), 15599−15609.
(19) Adner, D.; Korb, M.; Schulze, S.; Hietschold, M.; Lang, H. A
Straightforward Approach to Oxide-Free Copper Nanoparticles by
Thermal Decomposition of a Copper(I) Precursor. Chem. Commun.
2013, 49 (61), 6855−6857.
(20) Singh, M.; Sinha, I.; Singh, A. K.; Mandal, R. K. LSPR and
SAXS Studies of Starch Stabilized Ag-Cu Alloy Nanoparticles. Colloids
Surf., A 2011, 384 (1−3), 668−674.
(21) Singh, M.; Sinha, I.; Mandal, R. K. Synthesis of Nanostructured
Ag-Cu Alloy Ultra-Fine Particles. Mater. Lett. 2009, 63 (26), 2243−
2245.
H
Inorg. Chem. XXXX, XXX, XXX−XXX