Job/Unit: O30480
/KAP1
Date: 15-07-13 11:33:46
Pages: 10
Access to Phenothiazine Analogues of Tröger’s Base
of the rigid methano-diazocine bridge, which electronically Acknowledgments
decouples the two phenothiazine units in the PTB. Com-
pounds 5a–d exhibit blue fluorescence emission in dilute
Financial support from the Romanian Ministry of Education, Re-
search Youth and Sports (grant number ID PCCE 140/2008) and
tremely large Stokes shifts (8900–10300 cm ) and moderate from the Deutscher Akademischer Austausch-Dienst (DAAD)
solution and the solid state, and are characterized by ex-
–
1
quantum yields (4.5–12.3%).
(SOE programme) is gratefully acknowledged.
The experiments shown here, illustrating the supramolec-
ular assemblies, chirality, redox, and fluorescence properties
of amino-substituted phenothiazines and their related PTB,
qualify this family of phenothiazine derivatives for further
studies in materials science; their capacity to bind to pro-
teins or nucleic acids, and additional prooxidant reactivity
[
[
1] A. Bernthsen, Ber. Dtsch. Chem. Ges. 1883, 16, 2896–2904.
2] a) C. Lauth, Ber. Dtsch. Chem. Ges. 1876, 1035; b) A.
Berthnsen, Ber. Dtsch. Chem. Ges. 1912, 45, 1987–2042.
[
3] a) K. Pluta, B. Morak-Młodawska, M. Jele n´ , Eur. J. Med.
Chem. 2011, 46, 3179–3189; b) P. K. Dea, H. Keyzer, J. S.
Maurer, in: Bioactive Molecules, vol. 4 (Ed.: R. R. Gupta), El-
sevier, 1988, p. 587–620; c) L. Valzelli, S. Garattini, in: Prin-
ciples of Psychopharmacology (Ed.: W. G. Clark), Academic
Press, 1970, p. 255–258; d) W. J. Albery, A. W. Foulds, K. J.
Hall, A. R. Hillman, R. G. Edgell, A. F. Orchard, Nature 1979,
(including lipid peroxidation) point towards applications in-
volving biological activity with respect to more than one
class of biomolecules.
282, 793–797.
[
4] a) W. Al-Akhdar, Eur. Pat. 2173803A1, 27.05.2010; b) D. A.
Hutchison, UK Pat. GB 2449363, 09.12.2009; c) A. Evans, S.
Allenbach, S. Dubs, Eur. Pat., EP 1067124 A1, 10.01.2001.
5] C. Bodea, I. Silberg, Adv. Heterocycl. Chem. 1968, 9, 321–460.
6] C. S. Krämer, T. J. J. Müller, Eur. J. Org. Chem. 2003, 3534–
Experimental Section
[
[
General Procedure for Microwave-Assisted Palladium-Catalyzed
Synthesis of Amino-Phenothiazines: A microwave reaction tube was
charged with 10-alkyl-chloro-10H-phenothiazine (1 mmol),
3
548.
7] a) R. Duesing, G. Tapolsky, T. J. Meyer, J. Am. Chem. Soc.
990, 112, 5378–5379; b) W. E. Jones Jr., P. Chen, T. J. Meyer,
[
1
[
Pd
phanyl)biphenyl (4.2 mg, 12 μmol, 1.2%), the air was replaced by
argon, and LiN(SiMe (1 m in THF, 1.2 mL, 1.2 mmol) was care-
2 3
(dba) ] (4.6 mg, 5 μmol, 0.5 mol-%), and 2-(dicyclohexylphos-
J. Am. Chem. Soc. 1992, 114, 387–388; c) A. M. Brun, A. Har-
riman, V. Heitz, J.-P. Sauvage, J. Am. Chem. Soc. 1991, 113,
8657–8663; d) H. D. Burrows, T. J. Kemp, M. J. Welburn, J.
3 2
)
fully added. The reaction tube was sealed and placed in the micro-
wave reactor cavity. The reaction mixture was stirred under irradia-
tion at 140 °C for 1 h and, after cooling to room temperature, di-
ethyl ether (150 mL) was added and the mixture was acidified to
pH 3 with aqueous hydrochloric acid (5 mL, 15%) under vigorous
stirring. The precipitate was isolated by filtration and washed with
diethyl ether. The amine can be further purified by column
chromatography on basified silica gel.
Chem. Soc., Perkin Trans. 2 1973, 969–974; e) J. P. Collin, S.
Guillerez, J. P. Sauvage, J. Chem. Soc., Chem. Commun. 1989,
776–778; f) J. Daub, R. Engl, J. Kurzawa, S. E. Miller, S.
Schneider, A. Stockmann, M. R. Wasielewski, J. Phys. Chem.
A 2001, 105, 5655–5665.
[
[
8] a) C. S. Kramer, K. Zeitler, T. J. J. Muller, Org. Lett. 2000, 2,
2
3–25; b) M. Sailer, M. Nonnenmacher, T. Oeser, T. J. J. Müller,
Eur. J. Org. Chem. 2006, 423–435; c) C. Garcia, R. Oyola, L. E.
Pinero, R. Arce, J. Silva, V. Sanchez, J. Phys. Chem. A 2005,
109, 3360–3371; d) G. Viola, F. Dall’Acqua, Curr. Drug Targets
General Procedure for Microwave-Assisted Copper-Catalyzed Syn-
thesis of Amino-Phenothiazines: A microwave reaction tube was
charged with 10-alkyl-bromo-10H-phenothiazine (1 mmol), aque-
2006, 7, 1135–1154.
9] a) D. Dicu, L. Muresan, I. C. Popescu, C. Cristea, I. A. Silberg,
P. Brouant, Electrochim. Acta 2000, 45, 3951–3959; b) D.
Gligor, L. Muresan, I. C. Popescu, I. A. Silberg, Rev. Roum.
Chim. 2002, 47, 953–959; c) D. Gligor, Muresan, I. C. Popescu,
I. A. Silberg, Rev. Roum. Chim. 2003, 48, 463–467; d) F. Fungo,
S. A. Jenekhe, A. J. Bard, Chem. Mater. 2003, 15, 1264–1270;
e) Q. Gao, W. Wang, Y. Ma, X. Yang, Talanta 2004, 62, 477–
2
ous ammonia (1 mL, 35%), Cu O (0.01 g, 0.7 mmol), and N-
methyl-pyrrolidone (0.1 mL, 1 mmol), then sealed and subjected to
irradiation in the microwave reactor cavity. The reaction mixture
was stirred under irradiation at 110 °C for 2 h. After cooling to
room temperature, the reaction mixture was poured in water
4
83; f) J. S. Abraham, R. Ramaraj, J. Electroanal. Chem. 2004,
(150 mL) and the precipitate was isolated by filtration and further
561, 119–126; g) C. Cristea, G. Cormos, D. Gligor, I. Filip, L.
purified by column chromatography over silica gel with toluene as
eluent.
Muresan, I. C. Popescu, J. New Mater. Electrochem. Systems
009, 12, 233–238.
10] a) C. S. Kramer, K. Zeitler, T. J. J. Müller, Tetrahedron Lett.
001, 42, 8619–8624; b) A. W. Franz, L. N. Popa, T. J. J. Müller,
2
[
General Procedure for the Preparation of PTB: A solution of con-
centrated aqueous HCl (0.5 mL, 32%), formalin (0.7 mL, 37%),
and ethanol (20 mL, 95%) was cooled in an ice bath for 2 h. The
amino-10-alkyl-phenothiazine (1 mmol) was added and the mixture
was progressively heated to 60 °C and then the temperature was
maintained for 4 h. The reaction mixture was cooled, neutralized
with NaOH (1 m) and the solid was collected by vacuum filtration.
Purification was performed by column chromatography on silica
gel with toluene/dichloromethane as eluent.
2
Tetrahedron Lett. 2008, 49, 3300–3303; c) M. Sailer, A. W.
Franz, T. J. J. Müller, Chem. Eur. J. 2008, 14, 2602–2614; d) M.
Hauck, M. Stolte, J. Schonhaber, H.-G. Kuball, T. J. J. Müller,
Chem. Eur. J. 2011, 17, 9984–9998; e) T. Meyer, D. Ogermann,
A. Pankrath, K. Kleinermanns, T. J. J. Muller, J. Org. Chem.
2
012, 77, 3704–3715; f) A. W. Franz, L. N. Popa, F. Rominger,
T. J. J. Müller, Org. Biomol. Chem. 2009, 7, 469–475; g) M.
Hauck, R. Turdean, K. Memminger, J. Schonhaber, F. Rom-
inger, T. J. J. Müller, J. Org. Chem. 2010, 75, 8591–8603.
[
[
11] a) A. Bernthsen, Justus Liebigs Ann. Chem. 1885, 230, 169–
Supporting Information (see footnote on the first page of this arti-
cle): Detailed experimental synthetic protocols, structural assign-
ments based on spectroscopic methods (NMR, FT IR, UV/Vis,
HRMS, XRD) and experimental protocols applied in the study of
interaction with biomolecules.
1
70; b) A. Bernthsen, Ber. Dtsch. Chem. Ges. 1906, 39, 1808.
12] F. Kehrmann, O. Nossenko, Ber. Dtsch. Chem. Ges. 1913, 46,
2809–2820.
[13] a) L. Pinero, X. Calderon, J. Rodriguez, I. Nieves, R. Arce, C.
Garcia, R. Oyola, J. Photochem. Photobiol. A 2008, 198, 85–
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
9