D.C. Pinilla Peña, L.I. Rossi
MolecularCatalysis454(2018)44–54
[33] L. Men, M.A. White, H. Andaraarachchi, B.A. Rosales, J. Vela, Synthetic
Development of Low Dimensional Materials, Chem. Mater. 29 (2017) 168–175,
[34] A.T. Fiedler, A.A. Fischer, Oxygen activation by mononuclear Mn, Co, and Ni
centers in biology and synthetic complexes, J. Biol. Inorg. Chem. 22 (2017)
[9] N.S. Venkataramanan, G. Kuppuraj, S. Rajagopal, Metal-salen complexes as effi-
cient catalysts for the oxygenation of heteroatom containing organic compounds –
Synthetic and mechanistic aspects, Coord. Chem. Rev. 249 (2005) 1249–1268,
[10] Y. Sawama, S. Asai, Y. Monguchi, H. Sajiki, Versatile oxidation methods for or-
ganic and inorganic substrates catalyzed by platinum-group metals on carbons,
[11] W. Al Zoubi, Y.G. Ko, Organometallic complexes of Schiff bases: Recent progress in
[35] T. Amari, T. Ghnaya, C. Abdelly, Nickel, cadmium and lead phytotoxicity and
potential of halophytic plants in heavy metal extraction, South Afr. J. Bot. 111
[36] K.V. Brix, C.E. Schlekat, E.R. Garman, The mechanisms of nickel toxicity in aquatic
environments: An adverse outcome pathway analysis, Environ. Toxicol. Chem. 36
[12] P.C. Bulman Page, B.R. Buckley, C. Elliott, Y. Chan, N. Dreyfus, F. Marken,
Chemoselective oxidation of sulfides to sulfoxides with urea-hydrogen peroxide
[13] V.H. Jadhav, O.P. Bande, V.G. Puranik, D.D. Dhavale, Synthesis of azepane and
nojirimycin iminosugars: the Sharpless asymmetric epoxidation of d-glucose-de-
rived allyl alcohol and highly regioselective epoxide ring opening using sodium
[14] J.S. Carey, D. Laffan, C. Thomson, M.T. Williams, Analysis of the reactions used for
the preparation of drug candidate molecules, Org. Biomol. Chem. 4 (2006) 2337,
[15] D.J.C. Constable, P.J. Dunn, J.D. Hayler, G.R. Humphrey, J.L. Leazer, Jr.,
R.J. Linderman, K. Lorenz, J. Manley, B.A. Pearlman, A. Wells, A. Zaks,
T.Y. Zhang, Key green chemistry research areas – a perspective from pharma-
[16] Y. Yuan, Y. Bian, Gold(III) catalyzed oxidation of sulfides to sulfoxides with hy-
[17] A. Kumar, Akanksha, HbA/H2O2: an efficient biomimetic catalytic system for the
oxidation of sulfides to sulfoxides, Tetrahedron Lett. 48 (2007) 7857–7860,
[18] K. Matsumoto, T. Yamaguchi, T. Katsuki, Asymmetric oxidation of sulfides under
solvent-free or highly concentrated conditions, Chem. Commun. (Camb) (2008)
[19] B.M. Trost, M. Rao, Development of Chiral Sulfoxide Ligands for Asymmetric
[37] R. Behling, G. Chatel, S. Valange, Sonochemical oxidation of vanillyl alcohol to
vanillin in the presence of a cobalt oxide catalyst under mild conditions, Ultrason.
[38] J. Bonin, A. Maurin, M. Robert, Molecular catalysis of the electrochemical and
photochemical reduction of CO2 with Fe and Co metal based complexes, Recent
[39] A. Rérat, C. Michon, F. Agbossou-Niedercorn, C. Gosmini, Synthesis of symme-
trical diaryl ketones by cobalt-catalyzed reaction of arylzinc reagents with ethyl
[40] G. Hilt, W. Hess, T. Vogler, C. Hengst, Ligand and solvent effects on cobalt(I)-
catalysed reactions: alkyne dimerisation versus [2+2+2]-cyclotrimerisation
versus Diels-Alder reaction versus [4+2+2]-cycloaddition, J. Organomet. Chem.
[41] P. Zimmermann, C. Limberg, Activation of small molecules at nickel(I) moieties, J.
[42] K. Alomar, J.-J. Hélesbeux, M. Allain, G. Bouet, Synthesis, crystal structure, and
characterization of thiophene-3-carboxaldoxime complexes with cobalt(II), nickel
(II) and copper(II) halides, J. Mol. Struct. 1019 (2012) 143–150, http://dx.doi.
[43] A. Ryzhakov, T. Do Thi, J. Stappaerts, L. Bertoletti, K. Kimpe, A.R.S. Couto,
P. Saokham, G. Van den Mooter, P. Augustijns, G.W. Somsen, S. Kurkov,
S. Inghelbrecht, A. Arien, M.I. Jimidar, K. Schrijnemakers, T. Loftsson, Self-as-
sembly of cyclodextrins and their complexes in aqueous solutions, J. Pharm. Sci.
[44] E. Monflier, F. Hapiot, 12.16 organometallic inclusion and intercalation chemistry,
[21] K. Suzuki, J. Jeong, K. Yamaguchi, N. Mizuno, Photoredox catalysis for oxyge-
nation/deoxygenation between sulfides and sulfoxides by visible-light-responsive
[45] N.M. Milović, J.D. Badjić, N.M. Kostić, Conjugate of palladium(II) complex and β-
cyclodextrin acts as a biomimetic peptidase, J. Am. Chem. Soc. 126 (2004)
[46] F. Hapiot, S. Tilloy, E. Monflier, Cyclodextrins as supramolecular hosts for orga-
[22] A.R. Suárez, A.M. Baruzzi, L.I. Rossi, Halogen redox assistance and iron controlled
selectivity in oxidation of organic sulfides, J. Org. Chem. 63 (1998) 5689–5691,
[23] C.O. Kinen, L.I. Rossi, R.H. De Rossi, Mechanism of the selective sulfide oxidation
promoted by HNO 3/FeBr3, J. Org. Chem. 74 (2009) 7132–7139, http://dx.doi.
[24] L.I. Rossi, S.E. Martín, Possible role of nitrate/nitrite redox cycles in catalytic and
selective sulfoxidation reaction. Metallic nitrates and bromides as redox media-
tors: a comparative study, Appl. Catal. A Gen. 250 (2003) 271–278, http://dx.doi.
[47] W. Ciesielski, T. Girek, Study of thermal stability of-cyclodextrin/metal complexes
in the aspect of their future applications, J. Incl. Phenom. Macrocycl. Chem. 69
[48] B. Kaboudin, Y. Abedi, T. Yokomatsu, One-pot synthesis of 1,2,3-triazoles from
boronic acids in water using Cu(ii)–β-cyclodextrin complex as a nanocatalyst, Org.
[25] C.O. Kinen, L.I. Rossi, R.H. de Rossi, The development of an environmentally
benign sulfideoxidation procedure and its assessment by green chemistry metrics,
[26] L.I. Rossi, R.H. de Rossi, Synthesis of FeBr 3 −cyclodextrin complexes in non-
[27] L.I. Rossi, R.H. De Rossi, FeBr3-cyclodextrin complexes as efficient and chemo-
selective catalysts for sulfoxidation reactions, Appl. Catal. A Gen. 267 (2004)
[28] C.O. Kinen, L.I. Rossi, R.H. de Rossi, Chemoselective oxidation of organic sulfides
[51] D. Armspach, D. Matt, L. Poorters, R. Gramage-Doria, P. Jones, L. Toupet, Ditopic
binding of cyclodextrin-included ligands in trigonal silver(I) complexes,
[52] Y. Koito, K. Yamada, S. Ando, Solid-state NMR and wide-angle X-ray diffraction
study of hydrofluoroether/β-cyclodextrin inclusion complex, J. Incl. Phenom.
[53] D. Prochowicz, A. Kornowicz, I. Justyniak, J. Lewiński, Metal complexes based on
native cyclodextrins: Synthesis and structural diversity, Coord. Chem. Rev. 306
[54] D. Prochowicz, A. Kornowicz, J. Lewiński, Interactions of native cyclodextrins
with metal ions and inorganic nanoparticles: fertile landscape for chemistry and
[30] L. Zhao, X. Liu, L. Zhang, G. Qiu, D. Astruc, H. Gu, Metallomacromolecules con-
taining cobalt sandwich complexes: Synthesis and functional materials properties,
[31] L. Bai, F. Wyrwalski, J.F. Lamonier, A.Y. Khodakov, E. Monflier, A. Ponchel,
Effects of β-cyclodextrin introduction to zirconia supported-cobalt oxide catalysts:
From molecule-ion associations to complete oxidation of formaldehyde, Appl.
[55] E. Norkus, Metal ion complexes with native cyclodextrins. An overview, J. Incl.
[56] L.X. Song, J. Yang, L. Bai, F.Y. Du, J. Chen, M. Wang, Molecule-ion interaction and
its effect on electrostatic interaction in the system of copper chloride and -cyclo-
[57] Y. Guo, J. Li, F. Zhao, G. Lan, L. Li, Y. Liu, Y. Si, Y. Jiang, B. Yang, R. Yang,
Palladium-modified functionalized cyclodextrin as an efficient and recyclable
catalyst for reduction of nitroarenes, RSC Adv. 6 (2016) 7950–7954, http://dx.doi.
[32] L. Bai, F. Wyrwalski, M. Safariamin, R. Bleta, J.F. Lamonier, C. Przybylski,
E. Monflier, A. Ponchel, Cyclodextrin-cobalt (II) molecule-ion pairs as precursors
to active Co3O4/ZrO2 catalysts for the complete oxidation of formaldehyde:
[58] P. Saokham, T. Loftsson, γ-Cyclodextrin, Int. J. Pharm. 516 (2017) 278–292,
53