Organic Letters
Letter
2015, 54, 4041. (c) Huang, L.; Zheng, S. C.; Tan, B.; Liu, X.-Y. Org. Lett.
2015, 17, 1589. (d) Huang, L.; Lin, J. S.; Tan, B.; Liu, X.-Y. ACS Catal.
2015, 5, 2826. (e) Huang, L.; Zheng, S. C.; Tan, B.; Liu, X.-Y. Chem. -
Eur. J. 2015, 21, 6718. (f) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.;
Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.
(5) (a) Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies;
CRC Press: Boca Raton, FL, 2007. (b) Mayer, J. M. Acc. Chem. Res.
2011, 44, 36.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures, characterization of all new
compounds, Tables S1 and S2 (PDF)
(6) Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups in Organic
Synthesis; John Wiley & Sons, Inc.: 2006; p 16.
(7) Evans, D. A.; Truesdale, L. K.; Carroll, G. L. J. Chem. Soc., Chem.
AUTHOR INFORMATION
Corresponding Authors
■
Commun. 1973, 55.
ORCID
(8) (a) Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-
C.; Xiao, J.-C. Chem. Commun. 2011, 47, 6632. (b) Zhu, R.; Buchwald, S.
L. J. Am. Chem. Soc. 2012, 134, 12462. (c) Li, Y.; Studer, A. Angew.
Chem., Int. Ed. 2012, 51, 8221. (d) Jiang, X.-Y.; Qing, F.-L. Angew. Chem.,
Int. Ed. 2013, 52, 14177. (e) Yu, J.; Yang, H.; Fu, H. Adv. Synth. Catal.
2014, 356, 3669.
(9) Wu, Z.; Ren, R.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 10821
During our preparation of this manuscript, Zhu reported a similar
strategy, wherein their transformations are only limited to azide radical
and deproteced linear alkenyl cyanohydrins as substrates, which called
for the TMS removal step. In addition, an excess of TMSN3 (4.0 equiv)
together with a strong oxidant PhI(OAc)2 (2.0 equiv) are necessary to
generate the azide radical..
(10) (a) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
(b) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455.
(c) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115,
826. (d) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
(e) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
(11) Eisenberger, P.; Gischig, S.; Togni, A. Chem. - Eur. J. 2006, 12,
2579.
(12) (a) Zhdankin, V. V.; Krasutsky, A. P.; Kuehl, C. J.; Simonsen, A. J.;
Woodward, J. K.; Mismash, B.; Bolz, J. T. J. Am. Chem. Soc. 1996, 118,
5192. (b) Zhang, B.; Studer, A. Org. Lett. 2013, 15, 4548. (c) Yin, H.;
Wang, T.; Jiao, N. Org. Lett. 2014, 16, 2302.
Author Contributions
§These authors contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support from the National Natural Science Foundation
of China (Nos. 21572096, 21302088), Shenzhen overseas high
level talents innovation plan of technical innovation project
(KQCX20150331101823702), Shenzhen special funds for the
development of biomedicine, Internet, new energy, and new
mate-rial industries (JCYJ20150430160022517) is greatly
appreciated. Z.G. is thankful for financial support from the
100-Talent Program and 131-Excellent Talent Plan in Shanxi
Province, and Taiyuan University of Science and Technology of
China.
(13) (a) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
(b) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40,
102. (c) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
(d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013,
113, 5322. (e) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116,
10075.
(14) (a) Deng, G.-B.; Wang, Z.-Q.; Xia, J.-D.; Qian, P.-C.; Song, R.-J.;
Hu, M.; Gong, L.-B.; Li, J.-H. Angew. Chem., Int. Ed. 2013, 52, 1535.
(b) Pagire, S. K.; Paria, S.; Reiser, O. Org. Lett. 2016, 18, 2106.
(15) (a) Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R. Org. Lett. 2014,
16, 4594. (b) Tang, X.-J.; Dolbier, W. R. Angew. Chem., Int. Ed. 2015, 54,
4246.
(16) (a) Watt, D. S. J. Am. Chem. Soc. 1976, 98, 271. (b) Freerksen, R.
W.; Pabst, W. E.; Raggio, M. L.; Sherman, S. A.; Wroble, R. R.; Watt, D.
S. J. Am. Chem. Soc. 1977, 99, 1536. (c) Beckwith, A. L. J.; O’Shea, D. M.;
Gerba, S.; Westwood, S. W. J. Chem. Soc., Chem. Commun. 1987, 666.
(d) Beckwith, A. L. J.; O’Shea, D. M.; Westwood, S. W. J. Am. Chem. Soc.
1988, 110, 2565. (e) Doni, E.; Murphy, J. A. Org. Chem. Front. 2014, 1,
1072. (f) Kawamoto, T.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2015,
137, 8617.
(17) Another reaction pathway involving the oxidation of intermediate
I to carbocation and captured by CN in situ generated from the
decomposition of cyanohydrin to ketone can be ruled out since
substrates 1P and 1Q failed to afford the desired products.
(18) We appreciate one referee suggestion to prepare enantiopure 1A,
whose potential transformation to enantioenriched 3A would be both
synthetically and mechanistically valuable.
REFERENCES
■
(1) For selected reviews, see: (a) Grubbs, R. H.; Chang, S. Tetrahedron
1998, 54, 4413. (b) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G.
Angew. Chem., Int. Ed. 2006, 45, 7134. (c) Chemler, S. R.; Fuller, P. H.
Chem. Soc. Rev. 2007, 36, 1153. (d) Muller, T. E.; Hultzsch, K. C.; Yus,
̈
M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795. (e) McDonald, R.
I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981. (f) Zhang, C.; Tang,
C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464. (g) Wolfe, J. P. Angew. Chem.,
Int. Ed. 2012, 51, 10224. (h) Wu, W.; Jiang, H. Acc. Chem. Res. 2012, 45,
1736. (i) Tang, S.; Liu, K.; Liu, C.; Lei, A. Chem. Soc. Rev. 2015, 44, 1070.
(2) For selected reviews, see: (a) Studer, A. Angew. Chem., Int. Ed.
2012, 51, 8950. (b) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem.,
Int. Ed. 2013, 52, 8214. (c) Chen, P.; Liu, G. Synthesis 2013, 45, 2919.
(d) Studer, A.; Curran, D. P. Nat. Chem. 2014, 6, 765. (e) Chu, L.; Qing,
F.-L. Acc. Chem. Res. 2014, 47, 1513. (f) Merino, E.; Nevado, C. Chem.
Soc. Rev. 2014, 43, 6598. (g) Den
Renaud, P. Chem. Rev. 2014, 114, 2587. (h) Charpentier, J.; Fruh, N.;
́
es
̀
, F.; Pichowicz, M.; Povie, G.;
̈
Togni, A. Chem. Rev. 2015, 115, 650. (i) Alonso, C.; Martínez de
Marigorta, E.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847.
(j) Egami, H.; Sodeoka, M. Angew. Chem., Int. Ed. 2014, 53, 8294.
(k) Xu, J.; Liu, X.; Fu, Y. Tetrahedron Lett. 2014, 55, 585. (l) Zeng, Y.; Ni,
C.; Hu, J. Chem. - Eur. J. 2016, 22, 3210.
(3) (a) Zhang, H.; Pu, W.; Xiong, T.; Li, Y.; Zhou, X.; Sun, K.; Liu, Q.;
Zhang, Q. Angew. Chem., Int. Ed. 2013, 52, 2529. (b) He, Y.-T.; Li, L.-H.;
Yang, Y.-F.; Zhou, Z.-Z.; Hua, H.-L.; Liu, X.-Y.; Liang, Y.-M. Org. Lett.
2014, 16, 270. (c) Liang, Z.; Wang, F.; Chen, P.; Liu, G. J. Fluorine Chem.
́
2014, 167, 55. (d) Ilchenko, N. O.; Janson, P. G.; Szabo, K. J. J. Org.
Chem. 2013, 78, 11087. (e) Xu, L.; Mou, X.-Q.; Chen, Z.-M.; Wang, S.-
H. Chem. Commun. 2014, 50, 10676.
(4) (a) Yu, P.; Lin, J.-S.; Li, L.; Zheng, S.-C.; Xiong, Y.-P.; Zhao, L.-J.;
Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2014, 53, 11890. (b) Yu, P.;
Zheng, S.-C.; Yang, N.-Y.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed.
D
Org. Lett. XXXX, XXX, XXX−XXX