Vuluga et al.
JOCArticle
fluorinated alcohols for oxidation reactions,8-11 the role of
HBD seemed to be prominent as supported by theoretical and
experimental studies.7,12 In particular, Berkessel deduced
from crystal structures that the HBD was strongly connected
to the conformation along the C-O bond and that synclinal (sc)
and synperiplanar (sp) conformations were essential (Figure 1b).
Moreover, it was suggested that aggregation of HFIP as
dimers or trimers could also enhance this property.7
To a much lesser extent some tertiary hexafluorinated
alcohols (HFAs) have also been shown to have a remarkable
influence as additives on the course of reactions, even much
better than that of HFIP (Figure 1).13 Thus, Radinov
reported that the presence of 2-10 mol % of Ph(CF3)2COH
or 1,3-bis-HFAB controlled the selectivity of a Pd-catalyzed
isomerization of a diene mono-oxide.14 The authors con-
nected this effect to the relative Brønsted acidity of the HFA
additives. More recently, Hedrick showed that a 1,3-bis-
HFAB-type catalyst was able to catalytically assist the ring-
opening polymerization of lactides through hydrogen bond-
ing with the carbonyl group.15
In this context, we now report on the influence of the structure
of tri- and hexafluorinated alcohols on their hydrogen-bonding
properties through quantitative (spectroscopic measurements)
and qualitative experiments (formation of adducts with amines)
and the consequences on their behavior as reaction media.
FIGURE 1. (a) Some primary, secondary, and tertiary polyfluori-
nated alcohols. (b) Conformations of HFIP.
effect”,7 fluorinated alcohols are often compared to Lewis
acids, acting thus as electron acceptors, either through
proton release or through hydrogen-bond donation. So, it
is not unusual to see the terms Brønsted acidity and H-bond
donor ability being indifferently evoked in the literature,
inducing sometimes confusion between these two notions.
Nevertheless, in the activation of hydrogen peroxide by
Results and Discussion
It is already known from the literature that the introduc-
tion of aromatic or aliphatic substituents on fluorinated
alcohols has a weak influence on their acidity. For example,
(2) (a) Reichardt, C. Chem. Rev. 1994, 94, 2319–2358. (b) Eberson, L.;
Hartshorn, M. P.; Persson, O.; Radner, F. Chem. Commun. 1996, 2105–2112.
(c) Eberson, L.; Hartshorn, M. P.; Persson, O. J. Chem. Soc., Perkin Trans. 2
1995, 1735–1744. (d) Laurence, C.; Nicolet, P.; Reichardt, C. Bull. Soc. Chim.
Fr. 1987, 125–130.
€
€
(7) Berkessel, A.; Adrio, J. A.; Huttenhain, D.; Neudorfl, J. M. J. Am.
Chem. Soc. 2006, 128, 8421–8426.
(8) Sulfoxidation: (a) Ravikumar, K. S.; Kesavan, V.; Bonnet-Delpon,
(3) Laurence, C.; Gal, J. F. Lewis Basicity and Affinity Scales. Data and
Measurement; Wiley: Chichester, 2010.
(4) (a) Othon, C. M.; Kwon, O. H.; Lin, M. M.; Zewail, A. H. Proc. Natl.
Acad. Sci. U.S.A. 2009, 106, 12593–12598. (b) Chatterjee, C.; Hovagimyan,
G.; Gerig, J. T. In Current Fluoroorganic Chemistry; Soloshonok, V. A.,
Mikami, K., Yamazaki, T., Welch, J. T., Honek, J. F., Eds.; ACS Sympo-
sium Series; American Chemical Society: Washington, DC, 2007; p 379. (c)
Chatterjee, C.; Gerig, J. T. Biopolymers 2007, 87, 115–123. (d) Roccatano,
D.; Fioroni, M.; Zacharias, M.; Colombo, G. Protein Sci. 2005, 14, 2582–
2589. (e) Santiveri, C. M.; Pantoja-Uceda, D.; Rico, M.; Jimenez, M. A.
Biopolymers 2005, 79, 150–162. (f) Gerig, J. T. Biophys. J. 2004, 86, 3166–
3175. (g) Mulla, H. R.; Cammers-Goodwin, A. J. Am. Chem. Soc. 2000, 122,
738–739. (h) Andersen, N. H.; Dyer, R. B.; Fesinmeyer, R. M.; Gai, F.; Liu,
Z. H.; Neidigh, J. W.; Tong, H. J. Am. Chem. Soc. 1999, 121, 9879–9880. (i)
Hong, D.-P.; Hoshino, M.; Kuboi, R.; Goto, Y. J. Am. Chem. Soc. 1999, 121,
8427–8433. (j) Cammers-Goodwin, A.; Allen, T. J.; Oslick, S. L.; McClure,
K. F.; Lee, J. H.; Kemp, D. S. J. Am. Chem. Soc. 1996, 118, 3082–3090.
(5) For reviews on fluorinated alcohols, see: (a) Shuklov, I. A.; Dubro-
ꢁ
ꢁ
D.; Begue, J.-P. Org. Synth. 2003, vol. 80, 184–186. (b) Ravikumar, K. S.;
Begue, J.-P.; Bonnet-Delpon, D. Tetrahedron Lett. 1998, 39, 3141–3144. (c)
ꢁ
ꢁ
ꢁ
ꢁ
Ravikumar, K. S.; Zhang, Y. M.; Begue, J.-P.; Bonnet-Delpon, D. Eur. J.
Org. Chem. 1998, 2937–2940.
ꢁ
ꢁ
(9) Epoxidation: (a) Legros, J.; Crousse, B.; Bonnet-Delpon, D.; Begue,
J.-P. Eur. J. Org. Chem. 2002, 3290–3293. (b) van Vliet, M. C. A.; Arends, I.
W. C. E.; Sheldon, R. A. Synlett 2001, 248–250. (c) ten Brink, G. J.;
Fernandes, B. C. M.; van Vliet, M. C. A.; Arends, I. W. C. E.; Sheldon,
R. A. J. Chem. Soc., Perkin Trans. 1 2001, 224–228. (d) Neimann, K.;
Neumann, R. Org. Lett. 2000, 2, 2861–2863. (e) van Vliet, M. C. A.; Arends,
I. W. C. E.; Sheldon, R. A. J. Chem. Soc., Perkin Trans. 1 2000, 377–380. (f)
van Vliet, M. C. A.; Arends, I. W. C. E.; Sheldon, R. A. Tetrahedron Lett.
1999, 40, 5239–5242. (g) van Vliet, M. C. A.; Arends, I. W. C. E.; Sheldon,
R. A. Chem. Commun. 1999, 263–264.
(10) Transformation of ketones into tetraoxanes and/or lactones: (a)
Zmitek, K.; Stavber, S.; Zupan, M.; Bonnet-Delpon, D.; Charneau, S.;
ꢂ
Grellier, P.; Iskra, J. Bioorg. Med. Chem. 2006, 14, 7790–7795. (b) Zmitek,
K.; Stavber, S.; Zupan, M.; Bonnet-Delpon, D.; Iskra, J. Tetrahedron 2006,
62, 1479–1484. (c) Berkessel, A.; Andreae, M. R. M.; Schmickler, H.; Lex, J.
Angew. Chem., Int. Ed. 2002, 41, 4481–4484. (d) Berkessel, A.; Andreae,
M. R. M. Tetrahedron Lett. 2001, 42, 2293–2295. (e) ten Brink, G.-J.; Vis, J.-
M.; Arends, I. W. C. E.; Sheldon, R. A. J. Org. Chem. 2001, 66, 2429–2433. (f)
Matsumoto, M.; Kobayashi, H. Heterocycles 1986, 24, 2443–2247. (g) see
also ref 9d.
ꢂ
€
ꢁ ꢁ
vina, N. V.; Borner, A. Synthesis 2007, 2925–2943. (b) Begue, J.-P.; Bonnet-
ꢁ
ꢁ
Delpon, D.; Crousse, B. Synlett 2004, 18–29. (c) Begue, J.-P.; Bonnet-
Delpon, D.; Crousse, B. In Handbook of Fluorous Chemistry; Gladysz,
J. A., Curran, D. P., Horvath, I. T., Eds.; Wiley-VCH: Weinheim, 2004;
pp 341-350.
(6) For recent contributions on reactions in fluoroalcohol as solvents, see:
(a) Saito, A.; Kasai, J.; Konishi, T.; Hanzawa, Y. J. Org. Chem. 2010, 75,
6980–6982. (b) Li, G.-X.; Qu, J. Chem. Commun. 2010, 2653–2655. (c) Kirste,
A.; Nieger, M.; Malkowsky, I. M.; Stecker, F.; Fischer, A.; Waldvogel, S. R.
ꢁ
Chem.;Eur. J. 2009, 15, 2273–2277. (d) Guerard, K. C.; Chapelle, C.;
(11) Oxidative chlorination: Ben-Daniel, R.; de Visser, S. P.; Shaik, S.;
Neumann, R. J. Am. Chem. Soc. 2003, 125, 12116–12117.
(12) (a) Berkessel, A.; Adrio, J. A. J. Am. Chem. Soc. 2006, 128, 13412–
13420. (b) Berkessel, A.; Adrio, J. A. Adv. Synth. Catal. 2004, 346, 275–280.
(c) de Visser, S. P.; Kaneti, J.; Neumann, R.; Shaik, S. J. Org. Chem. 2003, 68,
2903–2912.
(13) For a convenient access to HFA patterns, see: Sridhar, M.; Nar-
saiah, C.; Ramanaiah, B. C.; Ankathi, V. M.; Pawar, R. B.; Asthana, S. N.
Tetrahedron Lett. 2009, 50, 1777–1779.
(14) Kabat, M. M.; Garofalo, L. M.; Daniewski, A. R.; Hutchings, S. D.;
Liu, W.; Okabe, M.; Radinov, R.; Zhou, Y. J. Org. Chem. 2001, 66, 6141–
6150.
(15) Coulembier, O.; Sanders, D. P.; Nelson, A.; Hollenbeck, A. N.;
Horn, H. W.; Rice, J. E.; Fujiwara, M.; Dubois, P.; Hedrick, J. L. Angew.
Chem., Int. Ed. 2009, 48, 5170–5173.
Giroux, M.-A.; Sabot, C.; Beaulieu, M.-A.; Achache, N.; Canesi, S. Org.
Lett. 2009, 11, 4756–4759. (e) De, K.; Legros, J.; Crousse, B.; Bonnet-
Delpon, D. J. Org. Chem. 2009, 74, 6260–6265. (f) Willot, M.; Chen, J. C.;
Zhu, J. Synlett 2009, 577–580. (g) Philippe, C.; Milcent, T.; Crousse, B.;
Bonnet-Delpon, D. Org. Biomol. Chem. 2009, 7, 2026–2028. (h) Ratnikov,
M. O.; Tumanov, V. V.; Smit, W. A. Angew. Chem., Int. Ed. 2008, 47, 9739–
9742. (i) Ilardi, E. A.; Stivala, C. A.; Zakarian, A. Org. Lett. 2008, 10, 1727–
ꢁ
1730. (j) Fustero, S.; Roman, R.; Sanz-Cervera, J. F.; Simon-Fuentes, A.;
Cunat, A. C.; Villanova, S.; Murguıa, M. J. Org. Chem. 2008, 73, 3523–3529.
ꢁ
~
(k) De, K.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Tetrahedron 2008, 64,
10497–10500. (l) Westermaier, M.; Mayr, H. Chem.;Eur. J. 2008, 14, 1638–
1647. (m) Hashimoto, M.; Obora, Y.; Sakaguchi, S.; Ishii, Y. J. Org. Chem.
2008, 73, 2894–2897. (n) Heydari, A.; Khaksar, S.; Tajbakhsh, M. Synthesis
2008, 3126–3130.
J. Org. Chem. Vol. 76, No. 4, 2011 1127