10.1002/anie.202008384
Angewandte Chemie International Edition
RESEARCH ARTICLE
[14] M. Plaza, C. Jandl, T. Bach, Angew. Chem. 2020, 132, 12885-12888;
Angew. Chem. Int. Ed. 2020, 59, 12785–12788.
[26] S. F. Yates, G. B. Schuster, J. Org. Chem. 1984, 49, 3349-3356.
[27] Supplementary crystallographic data for 8a have been deposited with the
Cambridge Crystallographic Data Centre (CCDC 1991020).
[15] For
a recent report on a mechanistically different photochemical
deracemization, see: N. Y. Shin, J. M. Ryss, X. Zhang, S. J. Miller, R. R.
Knowles, Science 2019, 366, 364-369.
[28] C. Müller, A. Bauer, M. M. Maturi, M. C. Cuquerella, M. A. Miranda, T.
Bach, J. Am. Chem. Soc. 2011, 133, 16689-16697.
[16] A. Iyer, A. Clay, S. Jockusch, J. Sivaguru, J. Phys. Org. Chem. 2017, 30,
e3738.
[29] a) L. Fielding, Tetrahedron 2000, 56, 6151-6170; b) A. Bakowski, M.
Dressel, A. Bauer, T. Bach, Org. Biomol. Chem. 2011, 9, 3516-3529.
[30] a) D. L. Dexter, J. Chem. Phys. 1953, 21, 836-850; b) A. Brown, F.
Wilkinson, J. Chem. Soc., Faraday Trans. 2, 1979, 75, 880-895; c) G. L.
Closs, P. Piotrowiak, J. M. MacInnis, G. R. Fleming, J. Am. Chem. Soc.
1988, 110, 2652-2653; d) B. Albinsson, J. Mårtensson, Phys. Chem.
Chem. Phys. 2010, 12, 7338-7351; e) C. Curutchet, A. A. Voityuk, J.
Phys. Chem. C 2012, 116, 22179-22185.
[17] H. J. Pownall, W. M. Mantulin, Molec. Phys. 1976, 31, 1393-1406.
[18] Reviews: a) E. P. Bacher, B. L. Ashfeld, Tetrahedron 2020, 76, 130692;
b) Z.-Y. Cao, F. Zhou, J. Zhou, Acc. Chem. Res. 2018, 51, 1443-1454;
c) G.-J. Mei, F. Shi, Chem. Commun. 2018, 54, 6607-6621; d) R.
Dalpozzo, Adv. Synth. Catal. 2017, 359, 1772-1810; e) R. Dalpozzo, Org.
Chem. Front. 2017, 4, 2063-2078; f) Z.-Y. Cao, J- Zhou, Org. Chem.
Front. 2015, 2, 849-858; g) L. Hong, R. Wang, R. Adv. Synth. Catal. 2013,
355, 1023-1052; h) G. S. Singh, Z. Y. Desta, Chem. Rev. 2012, 112,
6104-6155; i) R- Dalpozzo, G. Bartoli, G. Bencivenni, Chem. Soc. Rev.
2012, 41, 7247-7290.
[31] S. Speiser, Chem. Rev. 1996, 96, 1953-1976.
[32] T. Bach, T. Aechtner, B. Neumüller, Chem. Eur. J. 2002, 8, 2464-2475.
[19] a) H. E. Zimmerman, W. T. Flechtner, J. Am. Chem. Soc. 1970, 92, 6931-
6935; b) R. S. Becker, L. Edwards, R. Bost, M. Elam, G. J. Griffin, J. Am.
Chem. Soc. 1972, 94, 6584-6592; c) L. A. Paquette, G. V. Meehan, R. P.
Henzel, R. F. Eizember, J. Org. Chem. 1973, 38, 3250-3256; d) J.
Sivaguru, R. B. Sunoj, T. Wada, Y. Origane, Y. Inoue, V. Ramamurthy,
J. Org. Chem. 2004, 69, 5528-5536; e) J. Sivaguru, R. B. Sunoj, T. Wada,
Y. Origane, Y. Inoue, V. Ramamurthy, J. Org. Chem. 2004, 69, 6533-
6547; f) J. Sivaguru, T. Wada, Y. Origane, Y. Inoue, V. Ramamurthy,
Photochem. Photobiol. Sci. 2005, 4, 119-127.
[20] a) P. C. Wong, D. R. Arnold, Tetrahedron Lett. 1979, 20, 2101–2104; b)
H. D. Roth, M. L. M. Schilling, J. Am. Chem. Soc. 1980, 102, 7956–7958;
c) H. D. Roth, R. R. Sauers, Photochem. Photobiol. Sci. 2012, 11, 931-
937; d) Ł. Woźniak, G. Magagnano, P. Melchiorre, Angew. Chem. 2018,
130, 1080-1084; Angew. Chem. Int. Ed. 2018, 57, 1068-1072; e) Z.-P.
Liu, J.-L. Li, X.-L. Cheng, J.-G. Cui, Y.-M. Huang, C.-F. Gan, W. Su, J.-
A. Xiao, Eur. J. Org. Chem. 2019, 4085-4088.
[21] For selected reviews, see: a) E. P. Bacher, B. L. Ashfeld, Tetrahedron
2020, 76, 130692; b) Z.-Y. Cao, J. Zhou, Org. Chem. Front. 2015, 2, 849-
858; For selected examples, see: c) D. D. Schwarzer, P. J. Gritsch, T.
Gaich, Angew. Chem. 2012, 124, 11682-11684; Angew. Chem. Int. Ed.
2012, 51, 11514-11516; d) A. Awata, T. Arai, Synlett. 2013, 24, 29-32; e)
Z.-Y. Cao, F. Zhou, Y.-H. Yu, J. Zhou, Org. Lett. 2013, 15, 42-45; f) Z.-Y.
Cao, X. Wang, C. Tan, X.-L. Zhao, J. Zhou, K. Ding, J. Am. Chem. Soc.
2013, 135, 8197-8200; g) S. Muthusamy, R. Ramkumar, Tetrahedron
Lett. 2014, 55, 6389-6393; h) G. Karthik, T. Rajasekaran, B. Sridhar, B.
V. S. Reddy, Tetrahedron Lett. 2014, 55, 7064-7067.
[22] a) R. F. Cozzens, R. B. Fox, J. Chem. Phys. 1969, 50, 1532-1535; b) J.
P. Guillory, C. F. Cook, J. Am. Chem. Soc. 1973, 95, 4885-4891; c) R.
Rosenfeld, A. Alchalel, M. Ottolenghi, J. Phys. Chem. 1974, 78, 336-341.
[23] R.-J. Kutta, T. Langenbacher, U. Kensy, B. Dick, Appl. Phys. B 2013,
111, 203-216.
[24] a) G. Angulo, J. Grilj, E. Vauthey, L. Serra-Andrés, Ò. Rubio-Pons, P.
Jacques, ChemPhysChem 2010, 11, 480-488; b) J. F. Rodrigues, F. de
A. da Silva, J. C. Netto-Ferreira, J. Braz. Chem. Soc. 2010, 21, 960-965;
c) T. Villnow, G. Ryseck, V. Rai-Constapel, C. M. Marian, P. Gilch, J.
Phys. Chem. A 2014, 118, 11696-11707; d) V. Rai-Constapel, T. Villnow,
G. Ryseck, P. Gilch, C. M. Marian, J. Phys. Chem. A 2014, 118, 11708-
11717; e) R. Mundt, T. Villnow, C. T. Ziegenbein, P. Gilch, C. Marian, V.
Rai-Constapel, Phys. Chem. Chem. Phys. 2016, 18, 6637-6647; f) S.
Kayal, K. Roy, Y. Adithya Lakshmanna, S. Umapathy, J. Phys. Chem. A
2018, 122, 6048-6054.
[25] Lifetimes of triplet 1,3-diradicals are variable and span a range from ca.
100 ps to 100 s: a) K. Mizuno, N. Ichinose, Y. Otsuji, R. A. Caldwell, J.
Am. Chem. Soc. 1985, 107, 5797-5798; b) W. Adam, S. Grabowski, H.
Platsch, K. Hannemann, J. Wirz, R. M. Wilson, J. Am. Chem. Soc. 1989,
111, 751-753; c) P. S. Engel, K. L. Lowe, Tetrahedron Lett. 1994, 35,
2267-2270; d) S. B. Karki, J. P. Dinnocenzo, S. Farid, J. L. Goodman, I.
R. Gould, T. A. Zona, J. Am. Chem. Soc. 1997, 119, 431-432; e) E. Muray,
O. Illa, J. A. Castillo, Á. Álvarez-Larena, J. L. Bourdelande, V.
Branchadell, R. M. Ortuño, J. Org. Chem. 2003, 68, 4906-4911; f) M. Abe,
Chem. Rev. 2013, 113, 7011–7088; g) Y. Matsui, T. Oishi, E. Ohta, H.
Ikeda, J. Phys. Org. Chem. 2017, 30, e3636.
7
This article is protected by copyright. All rights reserved.