Organic & Biomolecular Chemistry
Communication
H. J. Schafer, Angew. Chem., Int. Ed., 2011, 50, 3854–3871;
Conclusions
(
c) K. Hill, Pure Appl. Chem., 2000, 72, 1255–1264.
In this work, we could demonstrate as proof-of-principle the
enantioselective biocatalytic formal α-amination of hexanoic
acid to L-norleucine, which proceeds without intermediate
purification in a linear one-pot three-step sequential cascade,
with pH adjustment after the first step. The key step was the
regioselective oxy-functionalization of non-activated C–H
bonds by P450 monooxygenase, followed by dehydrogenation
to the ketoacid and stereoselective reductive amination by
amino acid dehydrogenase. Reductive amination of
α-ketoacids to chiral amino acids by amino acid dehydrogen-
ases is well-documented, with industrial examples showcasing
4 S. Gandomkar, A. Dennig, A. Dordic, L. Hammerer,
M. Pickl, T. Haas, M. Hall and K. Faber, Angew. Chem., Int.
Ed., 2018, 57, 427–430.
5 S. Kim, S. Cheong, A. Chou and R. Gonzalez, Curr. Opin.
Biotechnol., 2016, 42, 206–215.
6 C. Wandrey, E. Fiolitakis, U. Wichmann and M. R. Kula,
Ann. N.Y. Acad. Sci., 1984, 434, 91–94.
7 B. Bossow and C. Wandrey, Ann. N.Y. Acad. Sci., 1987, 506,
325–336.
8 V. Resch, W. M. F. Fabian and W. Kroutil, Adv. Synth.
Catal., 2010, 352, 993–997.
9 Y. P. Xue, C. H. Cao and Y. G. Zheng, Chem. Soc. Rev., 2018,
47, 1516–1561.
2
2
the practical utility of the catalysts employed. The combi-
nation with a P450 peroxygenase, reported here for the first
time, appears promising for functionalization of bio-based 10 (a) A. S. Bommarius, M. Schwarm and K. Drauz, Chimia,
chemicals to access relevant chiral synthons. Conversions to
the final product are at present moderate; extension of this
work to preparative-scale synthesis of non-natural amino acids
with improved redox balance and final yield is currently under
investigation.
2001, 55, 50–59; (b) M. Breuer, K. Ditrich, T. Habicher,
B. Hauer, M. Kesseler, R. Sturmer and T. Zelinski, Angew.
Chem., Int. Ed., 2004, 43, 788–824; (c) J. Schrittwieser,
S. Velikogne and W. Kroutil, Catalysts, 2018, 8, 205.
11 (a) M. Girhard, S. Schuster, M. Dietrich, P. Durre and
V. B. Urlacher, Biochem. Biophys. Res. Commun., 2007, 362,
1
14–119; (b) T. Fujishiro, O. Shoji, S. Nagano, H. Sugimoto,
Y. Shiro and Y. Watanabe, J. Biol. Chem., 2011, 286, 29941–
9950.
2 A. S. Bommarius, K. Drauz, W. Hummel, M. R. Kula and
C. Wandrey, Biocatalysis, 1994, 10, 37–47.
Conflicts of interest
2
There are no conflicts to declare.
1
1
3 (a) I. G. Denisov, T. M. Makris, S. G. Sligar and
I. Schlichting, Chem. Rev., 2005, 105, 2253–2277;
Acknowledgements
(b) O. Shoji and Y. Watanabe, J. Biol. Inorg. Chem., 2014, 19,
The authors would like to thank Thomas Lins for excellent
technical assistance. The authors acknowledge the financial
support by the University of Graz.
529–539; (c) V. B. Urlacher and M. Girhard, Trends
Biotechnol., 2012, 30, 26–36.
4 (a) R. Bernhardt, J. Biotechnol., 2006, 124, 128–145;
1
(
b) I. G. Denisov and S. G. Sligar, in Cytochrome P450, ed.
P. R. Ortiz de Montellano, Springer, Heidelberg, 2015, pp.
9–109.
Notes and references
6
4
15 A. Dennig, M. Kuhn, S. Tassoti, A. Thiessenhusen, S. Gilch,
T. Bulter, T. Haas, M. Hall and K. Faber, Angew. Chem., Int.
Ed., 2015, 54, 8819–8822.
6 E. Koubek, M. L. Haggett, C. J. Battaglia, K. M. Ibne-Rasa,
H. V. Pyun and J. O. Edwards, J. Am. Chem. Soc., 1963, 85,
‡
In our previous work, oxidation of 2-hydroxyacids was performed by two
2 2
stereocomplementary (α-hydroxyacid oxidases, thereby releasing H O required
in the first step (‘catalytic reagent’ concept). This design was not selected for the
present three-step cascade, as final NADH-dependent reductive amination by
amino acid dehydrogenase would then require either stoichiometric amounts of
reduced nicotinamide or sacrificial substrate for cofactor recycling, in turn
increasing waste formation and affecting atom-economy.
1
2263–2268.
1
7 Both enzymes are active on 2-oxohexanoic acid in the
reductive direction, see: E. Busto, N. Richter, B. Grischek
and W. Kroutil, Chem. – Eur. J., 2014, 20, 11225–11228.
1
2
J. H. Schrittwieser, S. Velikogne, M. Hall and W. Kroutil,
Chem. Rev., 2018, 118, 270–348.
L. Martínez-Montero and I. Lavandera, in Modern 18 (a) H. Schutte, W. Hummel and M. R. Kula, Appl. Microbiol.
Biocatalysis: Advances Towards Synthetic Biological Systems,
ed. G. Williams and M. Hall, Royal Society of Chemistry,
Biotechnol., 1984, 19, 167–176; (b) W. Hummel, H. Schutte
and M. R. Kula, Appl. Microbiol. Biotechnol., 1985, 21, 7–15.
London, 2018, pp. 351–386; J. H. Schrittwieser, 19 A. Dennig, E. Busto, W. Kroutil and K. Faber, ACS Catal.,
S. Velikogne and W. Kroutil, in Modern Biocatalysis: 2015, 5, 7503–7506.
Advances Towards Synthetic Biological Systems, ed. G. 20 S. K. Wu, Y. Zhou, T. W. Wang, H. P. Too, D. I. C. Wang and
Williams and M. Hall, Royal Society of Chemistry, London,
018, pp. 387–438.
(a) J. C. Philp, R. J. Ritchie and J. E. M. Allan, Trends
Z. Li, Nat. Commun., 2016, 7, 11917.
21 H. L. Yu, T. Li, F. F. Chen, X. J. Luo, A. T. Li, C. Yang,
G. W. Zheng and J. H. Xu, Metab. Eng., 2018, 47, 184–189.
2
3
Biotechnol., 2013, 31, 219–222; (b) U. Biermann, 22 A. S. Bommarius, M. Schwarm and K. Drauz, J. Mol. Catal.
U. Bornscheuer, M. A. R. Meier, J. O. Metzger and B: Enzym., 1998, 5, 1–11.
This journal is © The Royal Society of Chemistry 2018
Org. Biomol. Chem., 2018, 16, 8030–8033 | 8033