770
J. Éles, G. Kalaus, A. Lévai, I. Greiner, M. Kajtár-Peredy, P. Szabó, L. Szabó and C. Szántay
Vol. 39
(+)-14,15-Didehydro-rhazidigenin (9).
Hz; 15-H), 6.09 (1H, brd, J=15.0 Hz; 22-H), 6.18 (1H, ddd,
J=12.0, 12.0 and <1 Hz;14-H), 6.56 (1H, dd, J=7.8 and 1.0 Hz;
12-H), 6.73 (1H, ddd, J=7.5, 7.3 and 1.0 Hz; 10-H), 7.06 (1H,
ddd, J=7.8, 7.3 and 1.3 Hz; 11-H), 7.25 (1H, dd, J=7.5 and 1.3
To a stirred solution of 7 (300 mg, 1.07 mmol) in acetone (15
mL) was added 1.5 equiv. DMD in acetone (0.08 M) at –60 ºC.
The reaction mixture was allowed to warm up to room tempera-
ture. The crude product was isolated by filtration and purified by
13
Hz; 9-H), 7.62 (1H, ddd, J=15.0, 12.0 and 1.0 Hz; 3-H); C nmr
(deuteriochloroform): δ 8.51 (C18), 27.49 (C19), 28.20 (C24),
34.05+34.08+42.24 (C16+C17+C6), 41.94 (C20), 49.28 (C5),
56.24 (C21), 88.16+89.43 (C2+C7), 109.70 (C12), 118.99 (C10),
123.41 (C9), 127.37 (C14), 129.21 (C11), 130.70 (C22), 132.36
(C8), 138.83 (C3), 147.62 (C15), 148.69 (C13), 198.56 (C23);
ms m/z (rel inten) 352(14.0), 309(22.0) 146(73.0), 91(86.0),
77(100.0), 57(59.0), 43(55.0).
preparative TLC (eluting with CHCl /EtOAc/MeOH=3/1/1) to
3
afford 180 mg (57%) of product 9 as an amorphous solid
24
(R =0.15); [α]
+9.2° (MeOH, c 0.5); ir (potassium bromide)
f
D
3208, 2968, 2392, 2368, 1960, 1616, 1476, 1384, 1140, 896, 748
-1 1
cm ; H nmr (deuteriochloroform+dimethylsulfoxide-d ): δ 0.84
6
(3H, t, J=7.5 Hz;18-H ), 1.24+1.28 (2x1H, 2xdq, J =13.7 Hz;
3
gem
19-H ), 1.50+2.40 (2x1H, 2xddd, J =13.8, J =10.9+1.5 and
2
gem
5,6
5.0+2.2 Hz, respectively; 5-H ), 1.57+2.55 (2x1H, 2xdddd,
Method B.
2
J
=14.0, J
=7.7+1.2 and 12.0+1.5, J =2.2 and <1Hz,
gem
16,17 lr
Compound 10 was obtained from 7 (300 mg, 0.12 mmol) by
the procedure described for 4 and 5 (Method B) to give 42 mg
(11%), which were identical to that prepared by Method A.
respectively; 17-H ), 2.04+2.24 (2x1H, 2xddd, J =13.4 Hz; 6-
H ), 2.27+3.27 (2x1H, 2xddd, J =15.0 Hz; 16-H ), 2.29+2.53
(2x1H, 2xbrd, J=11.5 Hz; 21-H ), 2.85+3.24 (2x1H, 2xddd,
2
gem
2
gem
2
2
Synthesis of 11 [16].
J
=16.3, J =1.7 and 4.5, J =2.3 and 1.5 Hz respectively;
gem
3,14 3,15
3-H ), 5.31 (1H, dddd, J
ddd; 14-H), 7.11 (1H, ddd, J =7.3, J
=9.8, J =1.7 Hz; 15-H), 5.77 (1H,
lr
2
14,15
A CHCl (5 mL) solution containing 10 (50 mg, 0.14 mmol)
was stirred at room temperature for 72 hours. The solvent was
removed in vacuo. The residue was purified by preparative TLC
3
=7.5, J
=1.2Hz;
9,10
10,11
10,12
10-H), 7.24 (1H, ddd, J
=7.5, J =1.4 Hz; 11-H), 7.28 (1H,
11,12
9,11
13
ddd, J =0.7 Hz; 9-H), 7.34 (1H, ddd; 12-H); C nmr (deuteri-
9,12
(eluting with hexane/acetone=2/1) to afford 21 mg (42 %) of
ochloroform+dimethylsulfoxide-d ): δ 7.96 (C18), 27.23 (C16),
24
6
product 11 as an amorphous solid (R =0.51); [α]
+20.6°
f
D
32.31 (C19), 34.77 (C17), 38.73 (C20), 41.25 (C6), 50.12 (C5),
50.68 (C3), 58.32 (C21), 86.76 (C7), 118.91 (C12), 122.29 (C9),
125.05 (C10), 125.64 (C14), 128.74 (C11), 133.21 (C15), 142.56
(CHCl , c 0.5); ir (potassium bromide) 3416, 3120, 2928, 2840,
3
1
2808, 1704, 1608, 1488, 1432, 1368, 1264, 1104, 900, 744; H
nmr (deuteriochloroform): δ 0.90 (3H, t, J =7.5 Hz; 18-H ),
vic
3
(C8), 153.63 (C13), 192.04 (C2); hrms (FAB) m/z calcd for
1.35+1.40 (2x1H, 2xdq, J
=13.5 Hz; 19-H ), 1.37+1.54
gem
2
+
C H N O 297.1967 found for [M+H] 297.1966.
19 26
2
(2x1H, 2xddd, J =13.2, J
=3.0 and 3.2, J =1.5 and 1.8 Hz,
gem
16,17
lr
1
NMR data of 9a: H nmr (deuteriochloroform+dimethylsulfox-
ide-d ): δ 0.94 (3H, t, J=7.6 Hz; 18-H ), 1.51+1.57 (2x1H, 2xdq,
respectively; 17-H ), 1.92 (1H, br ddd, J ~0.5 Hz; 16-H),
2
16,3
6
3
2.06+2.24 (2x1H, 2xddd, J =12.0, J =6.0+0.8 and 11.2+7.8
gem
5,6
J
J
=14.3 Hz; 19-H ), 1.58+1.97 (2x1H, 2xddd, J =13.2,
gem
2 gem
Hz respectively; 6-H ), 2.08 (3H, s; 24-H ), 2.44+2.53 (2x1H,
2
3
=5.5+~2 and 12.8+4.2 Hz, respectively; 17-H ), 2.07+2.46
16,17
2
2xd, J =11.0 Hz; 21-H ), 2.50+2.76 (2x1H, 2xddd, J =8.4
gem
2
gem
(2x1H, 2xddd, J =14.2 Hz; 16-H ), 2.41+2.82 (2x1H, 2xddd,
gem
2
Hz; 5-H ), 2.51+2.56 (2x1H, 2xdd, J =19.0, J =10.5 and 3.6
2
gem
3,22
J
= 14.5, J =7.0+~1 and 13.3+8.0 Hz; 6-H ), 3.40+3.51
gem
5,6 2
Hz, respectively; 22-H ), 3.77 (1H, ddddd, J =3.6, J =2.0
2
3,14
3,15
(2x1H, 2xddd, J =12.0 Hz; 5-H ), 3.41+3.68 (2x1H, 2xbrd,
gem
2
Hz; 3-H), 4.2 (1H, br; NH), 4.64 (1H, brs; OH), 5.58 (1H, ddd,
=9.7, J =1.0 Hz; 14-H), 5.65 (1H, ddd, J =1.5 Hz; 15-H),
Jgem=12.0 Hz; 21-H ), 3.90+4.37 (2x1H, 2xddm, Jgem=17.5,
2
J
14,15
lr
lr
J
=2.0 and 4.3, J =2.5 and 1.5+1.5 Hz, respectively; 3-H ),
3,14
l
r
2
6.49 (1H, ddd, J
=7.8, J
=1.0, J =0.5 Hz; 12-H), 6.74
11, 12
10,12 9,12
5.71 (1H, dm; J
=10.5 Hz; 15-H), 5.79 (1H, brs; NH), 5.94
14,15
(1H, ddd, J =7.3, J
=7.4; 10-H), 7.04 (1H, ddd, J =1.3
9,10
10,11
9,11
(1H, ddd; 14-H), 6.22 (1H, brs; OH), 6.80 (1H, dm; 12-H), 6.88
(1H, ddd; 10-H), 7.15 (1H, ddd; 11-H), 7.29 (1H, dm; 9-H);
nmr (deuteriochloroform+dimethylsulfoxide-d ): δ 7.53 (C18),
27.43 (C16), 30.31 (C19), 32.46 (C17), 35.58 (C20), 39.14 (C6),
54.41 (C3), 59.21 (C5), 59.75 (C21), 89.13 (C7), 102.46 (C2),
110.99 (C12), 120.95 (C10), 121.53 (C14), 123.13 (C9), 130.00
(C11), 131.26 (C15), 131.44 (C8), 145.47 (C13); NOE: 5.79(N1-
Hz; 11-H), 7.35 (1H, ddd; 9-H); NOE: 4.64 (7-OH) → 3.77 (3-
H), 1.92 (16-H), 7.35 (9-H); 3.77 (3-H) → 5.58 (14-H), 4.64 (7-
13
C
6
OH), 1.92(16-H), ~2.5 (22-H ); 2.51+2.56 (22-H ) → 5.58 (14-
2
2
H), 3.77 (3-H), 2.08 (24-H ), 1.92; (16-H), 1.54 (17-H ); 1.92
3
β
(16-H) → 3.77 (3-H), ~2.5 (22-H ), 1.37+1.54 (17-H ), 4.64 (7-
2
2
13
OH); C nmr (deuteriochloroform): δ 7.81 (C18), 29.52 (C17),
30.15 (C24), 31.01 (C3), 31.42 (C19), 35.15 (C20), 38.93 (C16),
42.42 (C6), 48.62 (C22), 48.82 (C5), 56.22 (C21), 89.65 (C7),
91.12 (C2), 108.48 (C12), 118.64 (C10), 123.49 (C9), 128.64
(C11), 131.63 (C14), 133.86 (C15), 134.12 (C8), 147.73 (C13),
210.45 (C23); hrms m/z calcd for C H N O 352.2151 found
H)→6.80(12-H), 4.37(3-H ), 2.07(16-H ); 6.22(7-
β
β
OH )→7.29(9-H), 2.82(6-H ), 1.97(17-H ), 3.68(21-H );
α
α
α
β
2.82(6-H )→2.41(6-H ), 3.51(5-H ), 3.68(21-H ) 6.22(7-OH ).
α
β
α
β
α
Synthesis of 10 [15].
22 28
2 2
+
for [M] 352.2153.
Method A.
(+)-Quebrachamine (8).
Compound 10 was obtained from 7 (300 mg, 1.07 mmol) by
the procedure described for 4 and 5 (Method A) to give 30 mg
A mixture of 7 (1.00 g 3.6 mmoles) and 0.50 g of 10 % palla-
dium/charcoal in 20 ml of glacial acetic acid was hydrogenated
for 5 hour at room temperature and then filtered. The filtrate was
poured onto ice-water and neutralized with saturated Na CO
solution. The solution was extracted with CH Cl (3x30 mL),
(8%) as an amorphous solid (R =0.47 hexane/acetone=2/1); ir
f
(potassium bromide) 3400, 3357, 2955, 1639, 1600, 1475, 1466,
-1
1
1300, 1249, 1110, 1095, 900, 745 cm ; H nmr (deuteriochloro-
form): δ 0.83 (3H, t, J=7.5 Hz; 18-H ), ~1.5m+1.75m (2x1H; 19-
2
3
3
2
2
H ), 1.4-2.2 (6H, m; 16-H +17-H +6-H ), 2.24 (3H, s; 24-H ),
and the combined organic layers were dried and evaporated in
vacuo. The residue was crystallized from methanol to yield 0.95g
(94%) of product 8 as white crystals. The authenticity of products
2
2
2
2
3
2.45 brd+2.90 dd (2x1H, J =11.5, J <1 and 2.0 Hz, respec-
gem
lr
tively; 21-H ), 2.47-2.83 (2H, m; 5-H ), 5.96 (1H, brd, J=12.0
2
2