Chemistry of Heterocyclic Compounds 2017, 53(2), 179–185
the precipitate that formed was filtered off and thoroughly
References
washed on filter with anhydrous acetоne. The residue was
recrystallized from a 4:1 mixture of n-BuOH–DMF.
2-[(Anthracen-9-ylmethyl)amino]-1-[2-(diethylamino)-
ethyl]-3-[2-oxo-2-(quinolin-8-ylamino)ethyl]-1H-benzimid-
azol-3-ium chloride (4). Yield 1.6 g (82%), light-brown
fine crystalline precipitate, mp >240°С (decomp.). IR spec-
trum, ν, cm−1: 3321, 3212 (NH), 1686 (C=O), 1655 (C=N).
1H NMR spectrum, δ, ppm (J, Hz): 0.83 (6Н, t, J = 6.9,
2CH3); 2.65 (2Н, t, J = 6.3, CH2); 3.30 (4Н, q, J = 6.9,
2CH2); 4.30 (2Н, t, J = 6.3, CH2); 5.41 (2H, s, CH2); 5.84
(2H, d, J = 6.8, CH2); 7.15–8.05 (13Н, m, H Ar, NH); 8.21
(2Н, d, J = 8.8, H Ar); 8.50 (2Н, d, J = 8.8, H Ar); 8.74–
8.83 (2Н, m, H Ar); 8.85–8.92 (1Н, m, H Ar); 11.53 (1Н, s,
NH). Found, %: С 72.90; Н 6.04; Cl 5.60; N 13.00.
С39Н39ClN6O. Calculated, %: С 72.82; Н 6.11; Cl 5.51;
N 13.07.
1. (a) Formica, M.; Fusi, V.; Giorgi, L.; Micheloni, M. Coord.
Chem. Rev. 2012, 256, 170. (b) Santos-Figueroa, L. E.;
Moragues, M. E.; Climent, E.; Agostini, A.; Martínez-Máñez, R.;
Sancenón, F. Chem. Soc. Rev. 2013, 42, 3489. (c) Dean, K. M.;
Qin, Y.; Palmer, A. E. Biochim. Biophys. Acta, Mol. Cell Res.
2012, 1823, 1406. (d) Carter, K. P.; Young, A. M.; Palmer, A. E.
Chem. Rev. 2014, 114, 4564. (e) Liu, Z.; He, W.; Guo, Z.
Chem. Soc. Rev. 2013, 42, 1568. (f) Gale, P. A.; Howe, E. N. W.;
Wu, X. Chem 2016, 1, 351. (g) Chemosensors: Principles,
Strategies, and Applications; Wang, B.; Anslyn, E. V., Eds.;
Wiley: Hoboken, 2011.
2. (a) Dutta, M.; Das, D. TrAC, Trends Anal. Chem. 2012, 32,
113. (b) Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J. Chem.
Soc. Rev. 2012, 41, 3210. (c) Quang, D. T.; Kim, J. S. Chem.
Rev. 2010, 110, 6280. (d) Zhou, Y.; Zhang, J. F.; Yoon, J.
Chem. Rev. 2014, 114, 5511. (e) Wang, F.; Wang, L.; Chen, X.;
Yoon, J. Chem. Soc. Rev. 2014, 43, 4312. (f) Obare, S. O.;
De, C.; Guo, W.; Haywood, T. L.; Samuels, T. A.; Adams, C. P.;
Masika, N. O.; Murray, D. H.; Anderson, G. A.; Campbell, K.;
Fletcher, K. Sensors 2010, 10, 7018.
3. (a) Bansal, Y.; Silakari, O. Bioorg. Med. Chem. 2012, 20,
6208. (b) Barot, K. P.; Nikolova, S.; Ivanov, I.; Ghate, M. D.
Mini–Rev. Med. Chem. 2013, 13, 1421. (c) Keri, R. S.;
Hiremathad, A.; Budagumpi, S.; Nagaraja, B. M. Chem. Biol.
Drug Des. 2015, 86, 19.
4. (a) Ghosh, K.; Sarkar, T. Supramol. Chem. 2011, 23, 435.
(b) Ghosh, K.; Tarafdar, D.; Samadder, A.; Khuda-Bukhsh, A. R.
RSC Adv. 2014, 4, 58530. (c) Lee, D. Y.; Singh, N.;
Satyender, A.; Jang, D. O. Tetrahedron Lett. 2011, 52, 6919.
(d) Ghosh, K.; Kar, D. Beilstein J. Org. Chem. 2011, 7, 254.
5. (a) Kulhánek, J.; Bureš, F. Beilstein J. Org. Chem. 2012, 8,
25. (b) Hung, W.-Y.; Chi, L.-C.; Chen, W.-J.; Chen, Y.-
M.; Chou, S.-H.; Wong, K.-T. J. Mater. Chem. 2010, 20,
10113.
2-Amino-3-{2-[(anthracen-9-ylmethyl)(2-chlorophenyl)-
amino]-2-oxoethyl}-1-[2-(diethylamino)ethyl]-1H-benz-
imidazol-3-ium chloride (6c). Yield 1.7 g (91%), bright-
yellow crystals, mp >220°С (decomp.). IR spectrum, ν, cm−1:
1
3310, 3194 (NH2), 1683 (C=O), 1662 (C=N). H NMR
spectrum, δ, ppm (J, Hz): 0.87 (6Н, t, J = 6.7, 2CH3); 2.72
(2Н, t, J = 6.5, CH2); 3.41 (4Н, q, J = 6.7, 2CH2); 4.27 (2Н,
t, J = 6.5, CH2); 4.55 (2H, s, CH2); 6.15 (2H, s, CH2); 7.05–
7.87 (12Н, m, H Ar); 8.14 (2Н, d, J = 8.7, H Ar); 8.40 (2Н,
d, J = 8.7, H Ar); 8.68 (1Н, s, H Ar); 9.88 (2H, s, NH2).
Found, %: С 68.92; Н 6.03; Cl 11.37; N 11.25.
С36Н37Cl2N5O. Calculated, %: С 69.00; Н 5.95; Cl 11.31;
N 11.18.
2-Amino-3-{2-[(anthracen-9-ylmethyl)(2-chlorophenyl)-
amino]-2-oxoethyl}-1-[3-(dimethylamino)propyl]-1H-benz-
imidazol-3-ium chloride (6e). Yield 1.6 g (89%), orange-
red crystals, mp >200°С (decomp.). IR spectrum, ν, cm−1:
6. (a) Zhang, L.; Wu, J.; Shi, L.; Xia, C.; Li, F. Tetrahedron Lett.
2011, 52, 3897. (b) Xi, C.; Wu, Y.; Yan, X. J. Organomet.
Chem. 2008, 693, 3842. (c) Dogan, O.; Demir, S.; Ozdemir, I.;
Cetinkaya, B. Appl. Organomet. Chem. 2011, 25, 163.
7. (a) Téllez, F.; López-Sandoval, H.; Castillo-Blum, S. E.;
Barba-Behrens, N. ARKIVOC 2008, (v), 245. (b) Alamgir, M.;
Black, D. S. C.; Kumar, N. In Bioactive Heterocycles III (Top.
Heterocycl. Chem.); Tareq, M.; Khan, H., Eds.; Springer-
Verlag: Berlin, 2007, Vol. 9, p. 87. (c) Grimmett, M. R.
Imidazole and Benzimidazole Synthesis, Meth-Cohn, O.;
Katritzky, A., Eds.; Academic Press: London, 1997.
1
3294, 3178 (NH2), 1680 (C=O), 1652 (C=N). H NMR
spectrum, δ, ppm (J, Hz): 1.48 (6H, s, 2СН3); 1.58–1.73
(4Н, m, 2СН2); 4.01 (2Н, t, J = 6.5, СН2); 4.65 (2H, s,
CH2); 6.08 (2Н, d, J = 5.3, СН2); 7.12–7.95 (12Н, m,
H Ar); 8.24 (2Н, d, J = 8.5, H Ar); 8.48 (2Н, d, J = 8.5,
H Ar); 8.57 (1Н, s, H Ar); 10.11 (2H, s, NH2). Found, %:
С 68.70; Н 5.83; Cl 11.49; N 11.37. С35Н35Cl2N5O.
Calculated, %: С 68.62; Н 5.76; Cl 11.57; N 11.43.
8. (a) Tolpygin, I. E.; Revinskii, Yu. V.; Starikov, A. G.;
Dubonosov, A. D.; Bren, V. A.; Minkin, V. I. Chem.
Heterocycl. Compd. 2012, 47, 1230. [Khim. Geterotsikl.
Soedin. 2011, 1491.] (b) Bren, V. A.; Tolpygin, I. E.;
Tihomirova, K. S.; Popova, O. S.; Bren, Zh. V.;
Revinskii, Yu. V.; Dubonosov, A. D.; Minkin, V. I. Chem.
Heterocycl. Compd. 2015, 50, 1665. [Khim. Geterotsikl.
Soedin. 2014, 1814.] (c) Tolpygin, I. E.; Rybalkin, V. P.;
Shepelenko, E. N.; Popova, L. L.; Revinskii, Yu. V.;
Tsukanov, A. V.; Dmitrieva, O. I.; Dubonosov, A. D.,
Bren, V. A.; Minkin, V. I. Russ. J. Org. Chem. 2008, 44, 557.
[Zh. Org. Khim. 2008, 562.] (d) Tolpygin, I. E.; Bren, V. A.;
Dubonosov, A. D.; Minkin, V. I.; Rybalkin, V. P. Russ. J.
Org. Chem. 2003, 39, 1364. [Zh. Org. Khim. 2003, 1435.]
(e) Tolpygin, I. E.; Anisimova, V. A.; Dubonosov, A. D.;
Bren, V. A.; Minkin, V. I. RU Patent 2443690.
Quantum-chemical calculations were performed using
the Gaussian 09 program11 with a method based on the
density functional theory, using B3LYP/6-31G(d,p) basis
set.12 In order to identify stationary points on the potential
energy surface (PEC), full geometry optimization of the
molecular structures was performed with calculation of
force constants. The structures representing energy minima
on PES were found by the steepest descent method (along
gradient lines) from the saddle point to the adjacent
stationary point (saddle point or minimum).13 The solvent
effects were accounted for by performing single-point
geometry calculations based on optimization in gas phase,
using the polarizable continuum model (IEFPCM).14
The work was performed with financial support from the
Russian Foundation for Basic Research (grant No. 16-33-
00439 mol_a).
9. Hall, H. K. J. Am. Chem. Soc. 1957, 79, 5441.
10. Ozeryanskii, V. A.; Milov, A. A.; Minkin, V. I.; Pozharskii, A. F.
Angew. Chem., Int. Ed. 2006, 45, 1453.
184