Chemistry Letters Vol.33, No.3 (2004)
237
Chem., 67, 86 (2002); G. X. Dai and R. C. Larock, Org. Lett., 4,
1
93 (2002); W. M. Abdou, A. F. M. Fahmy, and A. A.-A.
Kamel, Eur. J. Org. Chem., 2002, 1696; Q. H. Huang, J. A.
Hunter, and R. C. Larock, J. Org. Chem., 67, 3437 (2002); Q.
H. Huang and R. C. Larock, Tetrahedron Lett., 43, 3557
(2002); S. K. Chattopadhyay, S. Maity, B. K. Pal, and S. Panja,
Tetrahedron Lett., 43, 5079 (2002); G. X. Dai and R. C. Larock,
J. Org. Chem., 67, 7042 (2002); T. V. V. Ramakrishna and P. R.
Sharp, Org. Lett., 5, 877 (2003); B. Pal, P. Jaisankar, and V. S.
Giri, Synth. Commun., 33, 2339 (2003); S. G. Lim, J. H. Lee, C.
W. Moon, J. B. Hong, and C. H. Jun, Org. Lett., 5, 2759 (2003)
and refs cited therein. After the completion of the present work
we became aware of a publication by Ichikawa and colleagues
who report a synthesis of 1,4-disubstituted 3-fluoroisoquino-
lines by reactions of o-cyano-ꢀ,ꢀ-difluorostyrenes with organo-
metals; J. Ichikawa, Y. Wada, H. Miyazaki, T. Mori, and H.
Kuroki, Org. Lett., 5, 1455 (2003); For recent utilizations of
isoquinolines for the preparation of isoquinoline alkaloides:
H. Kohno and K. Yamada, Heterocycles, 51, 103 (1999); K.
Orito, Y. Satoh, H. Nishizawa, and M. Tokuda, Org. Lett., 2,
2535 (2000).
For reports on the synthesis and biological importance of iso-
quinolin-1-amines: T. Saito, T. Ohkubo, H. Kuboki, M. Maeda,
K. Tsuda, T. Karakasa, and S. Satsumabayashi, J. Chem. Soc.,
Perkin Trans. 1, 1998, 3065; J. B. M. Rewinkel, H. Lucas, M. J.
Smit, A. B. J. Noach, T. G. van Dinther, A. M. M. Rood, A. J. S.
M. Jenneboer, and C. A. A. van Boeckel, Bioorg. Med. Chem.
Lett., 9, 2837 (1999); J. D. Tovar and T. M. Swager, J. Org.
Chem., 64, 6499 (1999).
Scheme 5.
successful; an intractable mixture of products was obtained in
each case.
The pathway to isoquinoline derivatives 2 and 3 is outlined
in Scheme 5. Thus, the addition of a nucleophile to the nitrile
ꢀ
carbon of 1 at À78 C results in the formation of the nitrogen
3
anion intermediate 4. When the reaction temperature is raised
to room temperature, the attack of this anion at the ꢁ-carbon
atom of the methoxyvinyl moiety occurs to give the benzyl anion
5
. Subsequent loss of methoxide gives rise to the isoquinoline
derivatives 2 and 3. It is reasonable that the poorer results were
obtained in the cases of using 1b as the lower stability of the cor-
responding intermediate benzyl anions due to the methoxy sub-
stituent at the benzene nucleus is taken into consideration.
In summary, an efficient procedure for the preparation of
isoquinoline derivatives has been developed. It may offer the
4
J. A. Joule, K. Mills, G. F. Smith, ‘‘Heterocyclic Chemistry, 3rd
ed.,’’ Stanley Thrones, London (1995), Chap. 6, p 120; K. S.
Chen, F. N. Ko, C. M. Teng, and Y. C. Wu, J. Nat. Prod., 59,
5
31 (1996); Y. Yoshida, D. Barrett, H. Azami, C. Morinaga,
possibility of accessing compounds of potential biological
interest.10
S. Matsumoto, Y. Matsumoto, and H. Takasugi, Bioorg. Med.
Chem., 7, 2647 (1999); Q. Chao, L. Deng, H. C. Shih, L. M.
Leoni, D. Genini, D. A. Carson, and H. B. Cottam, J. Med.
Chem., 42, 3860 (1999); J. E. Van Muijlwijk-Koezen, H.
Timmerman, H. Van der Goot, W. M. P. B. Menge, J. F. Von
Kuenzel, M. De Groote, and A. P. Ijzerman, J. Med. Chem.,
We are very grateful to Mrs. Miyuki Tanmatsu of this De-
partment for determining mass spectra and performing combus-
tion analyses. This work was supported in part by a Grant-in-Aid
for Scientific Research No. 15550092 from the Ministry of
Education, Culture, Sports, Science and Technology.
4
3, 2227 (2000); M. Croisy-Delcey, A. Croisy, D. Carrez, C.
Huel, A. Chiaroni, P. Ducrot, E. Bisagni, L. Jun, and G.
Leclercq, Bioorg. Med. Chem., 8, 2629 (2000); R. Y. Kuo, F.
R. Chang, C. C. Wu, R. Patnam, W. Y. Wang, Y. C. Du, and
Y. C. Wu, Bioorg. Med. Chem. Lett., 13, 2789 (2003).
R. D. Rieke, D. E. Stack, B. T. Dawson, and T.-C. Wu, J. Org.
Chem., 58, 2483 (1993).
J. H. Helberger and A. von Rebay, Liebigs Ann. Chem., 531,
279 (1937).
V. J. Bauer, B. J. Duffy, D. Hoffman, S. S. Kloize, R. W.
Kosely, Jr., A. R. McFadden, L. L. Martin, H. H. Ong, and H.
M. Geyer, J. Med. Chem., 19, 1315 (1976).
References and Notes
1
K. Kobayashi, K. Yoneda, M. Mano, O. Morikawa, and H.
Konishi, Chem. Lett., 32, 76 (2003).
5
6
7
2
For an excellent review for earlier works on the synthesis of iso-
quinolines: T. Kametani and K, Fukumoto, in ‘‘The Chemistry
of Heterocyclic Compounds, Isoquinolines,’’ ed. by G. Grethe,
Wiley, New York (1981), Vol. 38, Part 1, Chap. 2, p 139; For
recent reports: E. M. Brun, S. Gil, R. Mestres, and M. Parra,
Synthesis, 2000, 273; A. A. Fadda and H. M. Refat, Synth. Com-
mun., 30, 341 (2000); T. Sakamoto, A. Numata, and Y. Kondo,
Chem. Pharm. Bull., 48, 669 (2000); R. Fujita, M. Hoshino, H.
Tomisawa, and H. Hongo, Chem. Pharm. Bull., 48, 1814
8
9
L. Friedman and H. Shechter, J. Org. Chem., 26, 2522 (1961).
The use of less than 2 equiv. of organolithiums resulted in
decrease of the yields of the desired products and the starting
material 1a was recovered.
(
2000); H. Ishii, Y. Imai, T. Hirano, S. Maki, H. Niwa, and
M. Ohashi, Tetrahedron Lett., 41, 6467 (2000); H. Tsutsui
and K. Narasaka, Chem. Lett., 2001, 526; M. A. A. Meziane,
S, Royer, and J. P. Bazureau, Tetrahedron Lett., 42, 1017
10 All new compounds gave satisfactory apectral and analytical
data. Physical data for compounds 2 and 3 follow. 2a: mp
ꢀ
11
ꢀ
141 C (lit., 131 C); 2b: Rf 0.54 (CH2Cl2); 2c: Rf 0.58 (5:1
ꢀ
(
3
(
2001); Q. H. Huang, J. A. Hunter, and R. C. Larock, Org. Lett.,
, 2973 (2001); G. X. Dai and R. C. Larock, Org. Lett., 3, 4035
2001); P. J. Campos, M. Caro, and M. A. Rodr ´ı guez, Tetrahe-
hexane-AcOEt); 2d: Rf 0.68 (CH2Cl2); 2e: mp 204–205 C;
ꢀ
ꢀ
ꢀ
12
2f: mp 108 C; 2g: mp 100–101 C; 2h: mp 77–78 C (lit.
ꢀ
mp 75–76 C); 3a: Rf 0.63 (2:1 hexane-AcOEt); 3b: Rf 0.71
ꢀ
ꢀ
dron Lett., 42, 3575 (2001); K. R. Roesch, H. M. Zhang, and R.
C. Larock, J. Org. Chem., 66, 8042 (2001); A. S. Capilla, M.
Romero, M. D. Pujol, D. H. Caignard, and P. Renard, Tetrahe-
dron, 57, 8297 (2001); K. R. Roesch and R. C. Larock, J. Org.
(5:1 hexane-AcOEt); 3c: mp 104 C; 3d: mp 120–121 C; 3e:
ꢀ
ꢀ
ꢀ
mp 133–134 C; 3f: mp 151–152 C; 3g: mp 136–137 C.
11 W. Krabbe, H. H. B o¨ hlk, and K. Heinz, Ber., 71, 64 (1938).
12 K. Ziegler and H. Zeiser, Liebigs Ann. Chem., 485, 174 (1931).
Published on the web (Advance View) January 26, 2004; DOI 10.1246/cl.2004.236