Paper
Journal of Materials Chemistry C
transportation/injection of charge carriers and improve the
film stability of the emission layer, resulting in good device
stability. The maximum EQEs of the OLEDs based on the two
TADF emitters are significantly higher than the fluorescence
efficiency limit of 5%, indicating that the 75% electronically
excited triplet excitons are successfully harvested for EL by
their facile RISC in the TADF mechanism with an exciton
utilization efficiency of 39.0% and 57.7% in the DPhCzB- and
2 Y. C. Wei, S. F. Wang, Y. Hu, L. S. Liao, D. G. Chen,
K. H. Chang, C. W. Wang, S. H. Liu, W. H. Chan,
J. L. Liao, W. Y. Hung, T. H. Wang, P. T. Chen, H. F. Hsu,
Y. Chi and P. T. Chou, Nat. Photonics, 2020, 14, 570–577.
3 Y. Wada, H. Nakagawa, S. Matsumoto, Y. Wakisaka and
H. Kaji, Nat. Photonics, 2020, 14, 643–649.
4 T. Wang, X. Su, X. Zhang, X. Nie, L. Huang, X. Zhang, X. Sun,
Y. Luo and G. Zhang, Adv. Mater., 2019, 31, 1904273.
5 S. F. Wang, Y. Yuan, Y. C. Wei, W. H. Chan, L. W. Fu,
B. K. Su, I. Y. Chen, K. J. Chou, P. T. Chen, H. F. Hsu,
C. L. Ko, W. Y. Hung, C. S. Lee, P. T. Chou and Y. Chi, Adv.
Funct. Mater., 2020, 30, 2002173.
3
5
DTPAB-based OLEDs, respectively. It should be noted that
this performance is among the best results of solution-
processed red OLEDs.
6
7
8
9
M. C. Xie, C. M. Han, Q. Q. Liang, J. Zhang, G. H. Xie and
H. Xu, Sci. Adv., 2019, 5, eaav9857.
J. Song, H. Lee, E. G. Jeong, K. C. Choi and S. Yoo, Adv.
Mater., 2020, 32, e1907539.
Y. Tao, L. Xu, Z. Zhang, R. Chen, H. Li, H. Xu, C. Zheng and
W. Huang, J. Am. Chem. Soc., 2016, 138, 9655–9662.
K. Tuong Ly, R. W. Chen-Cheng, H. W. Lin, Y. J. Shiau,
S. H. Liu, P. T. Chou, C. S. Tsao, Y. C. Huang and Y. Chi, Nat.
Photonics, 2016, 11, 63–68.
Conclusions
In summary, we propose a new strategy, namely inter-molecular
locking, to design highly efficient red TADF emitters with
excellent solubility for high-performance solution-processed
OLEDs. Based on flexible difluoroboron b-diketonate with
exposed and easily reachable fluorine in forming hydrogen
bonds with the surrounding hydrogen atoms, two novel red
TADF molecules of DPhCzB and DTPAB were facilely prepared,
exhibiting excellent solubility in common organic solvents and
red emission beyond 630 nm with high PLQYs over 55% in neat
films due to the rigidified molecules in the solid state by
intermolecular hydrogen bonding to suppress the nonradiative
decay significantly. Using DPhCzB and DTPAB as emitters in a
simple solution-processed device structure, highly efficient red
1
1
1
1
0 Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng,
L. Zhang and W. Huang, Adv. Mater., 2014, 26, 7931–7958.
1 Y. Liu, C. Li, Z. Ren, S. Yan and M. R. Bryce, Nat. Rev. Mater.,
2018, 3, 18020.
2 W. Yuan, H. Yang, C. Duan, X. Cao, J. Zhang, H. Xu, N. Sun,
Y. Tao and W. Huang, Chem, 2020, 6, 1998–2008.
3 S. Xu, Q. Yang, Y. Wan, R. Chen, S. Wang, Y. Si, B. Yang,
D. Liu, C. Zheng and W. Huang, J. Mater. Chem. C, 2019, 7,
TADF OLEDs with a low turn-on voltage of 4.4 V, high EQE up to
À2
8.2% and low efficiency roll-off of 9.0% at 1000 cd m were
9523–9530.
realized. These impressive device performances with the aid of
the intermolecular locking strategy to address the inherent
contradictions between the solubility and luminescent efficiency
of organic molecules represent an important step forward in
designing highly efficient solution-processible organic opto-
electronic materials, especially red light emitting TADF molecules,
for advanced device applications.
14 X. Ai, E. W. Evans, S. Dong, A. J. Gillett, H. Guo, Y. Chen,
T. J. H. Hele, R. H. Friend and F. Li, Nature, 2018, 563,
536–540.
1
5 H. Guo, Q. Peng, X. K. Chen, Q. Gu, S. Dong, E. W. Evans,
A. J. Gillett, X. Ai, M. Zhang, D. Credgington, V. Coropceanu,
R. H. Friend, J. L. Bredas and F. Li, Nat. Mater., 2019, 18,
977–984.
1
6 A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato
and C. Adachi, Adv. Mater., 2009, 21, 4802–4806.
7 T. L. Wu, M. J. Huang, C. C. Lin, P. Y. Huang, T. Y. Chou,
R. W. Chen-Cheng, H. W. Lin, R. S. Liu and C. H. Cheng,
Nat. Photonics, 2018, 12, 235–240.
Conflicts of interest
1
There are no conflicts to declare.
Acknowledgements
18 D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee
and J. H. Kwon, Nat. Photonics, 2019, 13, 540–546.
This study was supported by the National Natural Science
Foundation of China (21674049, 21772095, 91833306, and
1
9 Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh,
Y. Sasada, M. Yanai and T. Hatakeyama, Nat. Photonics,
61875090), Key giant project of Jiangsu Educational Committee
2
019, 13, 678–682.
0 A. Zampetti, A. Minotto and F. Cacialli, Adv. Funct. Mater.,
019, 29, 1807623.
1 J. H. Kim, J. H. Yun and J. Y. Lee, Adv. Opt. Mater., 2018,
, 1800255.
(19KJA180005), the fifth 333 project of Jiangsu Province of
2
2
2
China (BRA2019080), and 1311 Talents Program of Nanjing
University of Posts and Telecommunications (Dingshan).
2
6
2 D. G. Congrave, B. H. Drummond, P. J. Conaghan, H. Francis,
S. T. E. Jones, C. P. Grey, N. C. Greenham, D. Credgington and
H. Bronstein, J. Am. Chem. Soc., 2019, 141, 18390–18394.
Notes and references
1
X. Tang, L. S. Cui, H. C. Li, A. J. Gillett, F. Auras, Y. K. Qu,
C. Zhong, S. T. E. Jones, Z. Q. Jiang, R. H. Friend and 23 Y. L. Zhang, Q. Ran, Q. Wang, Y. Liu, C. Hanisch, S. Reineke,
L. S. Liao, Nat. Mater., 2020, 19, 1332–1338.
J. Fan and L. S. Liao, Adv. Mater., 2019, 31, e1902368.
2296 | J. Mater. Chem. C, 2021, 9, 2291À2297
This journal is The Royal Society of Chemistry 2021