ChemComm
Communication
contribute to the design of more efficient catalytic systems and
may provide a new strategy for the development of green organic
transformations using CO as the renewable resource.
2
This work was supported by the National Natural Science
Foundation of China (21073042, 21273044), the Research Fund
for the Doctoral Program of Higher Education (2012007000011)
and Science & Technology Commission of Shanghai Munici-
pality (08DZ2270500).
Notes and references
1
2
3
(a) D. H. Gibson, Chem. Rev., 1996, 96, 2063–2095; (b) T. Sakakura,
J.-C. Choi and H. Yasuda, Chem. Rev., 2007, 107, 2365–2387; (c) D. J.
Darensbourg, Chem. Rev., 2007, 107, 2388–2410; (d) K. M. K. Yu,
I. Curcic, J. Gabriel and S. C. E. Tsang, ChemSusChem, 2008, 1,
2 2 2
Fig. 2 Recycling of Ir/HSA-TiO -A for DMF synthesis from CO , H and
8
93–899; (e) M. Mikkelsen, M. Jørgensen and F. C. Krebs, Energy
aqueous NHMe
2 2
. Reaction conditions: 200 mg catalyst, 15.1 mmol NHMe ,
Environ. Sci., 2010, 3, 43–81; ( f ) Carbon Dioxide as Chemical Feed-
stock, M. Aresta, Wiley-VCH, Weinheim, 2010.
P
CO = P = 30 bar at 25 1C, 140 1C, 16 h.
H
2
2
(a) W. Leitner, Angew. Chem., Int. Ed. Engl., 1995, 34, 2207–2221;
(
b) W. Leitner, Coord. Chem. Rev., 1996, 153, 257–284; (c) P. G. Jessop,
F. Jo o´ and C.-C. Tai, Coord. Chem. Rev., 2004, 248, 2425–2442;
d) I. Omae, Coord. Chem. Rev., 2012, 256, 1384–1405; (e) M. Cokoja,
These data, together with the catalytic results shown in Table 2,
strongly suggest that the unique bifunctional character of
partially reduced iridium oxide species is essential to greatly
facilitate the desired DMF synthesis.
(
C. Bruckmeier, B. Rieger, W. A. Herrmann and F. E. K u¨ hn, Angew.
Chem., Int. Ed., 2011, 50, 8510–8538; ( f ) P. G. Jessop, S. M. Mercer and
D. J. Heldebrant, Energy Environ. Sci., 2012, 5, 7240–7253.
(a) P. G. Jessop, Y. Hsiao, T. Ikariya and R. Noyori, J. Am. Chem. Soc.,
1996, 118, 344–355; (b) K. M. K. Yu, C. M. Y. Yeung and S. C. Tsang,
J. Am. Chem. Soc., 2007, 129, 6360–6361; (c) C. Federsel, R. Jackstell
and M. Beller, Angew. Chem., Int. Ed., 2010, 49, 6254–6257;
10
On the basis of the above results and the relevant literature,
a
possible reaction pathway for DMF synthesis involving formate
intermediate formation via synergistic-cooperative combination of
(
d) C. Federsel, A. Boddien, R. Jackstell, R. Jennerjahn, P. J. Dyson,
R. Scopelliti, G. Laurenczy and M. Beller, Angew. Chem., Int. Ed.,
010, 49, 9777–9780; (e) Q. Y. Bi, X. L. Du, Y. M. Liu, Y. Cao, H. Y. He
and K. N. Fan, J. Am. Chem. Soc., 2012, 134, 8926–8933.
x 2
Ir and IrO species over Ir/HSA-TiO -A was proposed (Scheme S1,
2
ESI†). Further investigation into the effect of reaction parameters on
the performance of the Ir/HSA-TiO -A catalyst revealed that a
2
4 P. G. Jessop, T. Ikariya and R. Noyori, Chem. Rev., 1995, 95, 259–272.
5 (a) W. Wang, S. Wang, X. Ma and J. Gong, Chem. Soc. Rev., 2011, 40,
temperature of 140 1C is optimal for this reaction. Higher tempera-
tures (e.g. 4 180 1C) can lead to appreciable generation of toxic CO
gas as a result of the undesirable reverse water-gas shift (RWGS)
reaction, thus poisoning the Ir-based catalyst and decreasing the
DMF productivity (Fig. S6, ESI†). The increase of total pressure is in
favor of reaction proceeding (Fig. S7, ESI†), and the reaction at an
equivalent molar ratio of CO to H is most suitable (Fig. S8, ESI†).
3703–3727; (b) A. Goeppert, M. Czaun, G. K. S. Prakash and
G. A. Olah, Energy Environ. Sci., 2012, 5, 7833–7853; (c) M. Aresta,
A. Dibenedetto and A. Angelini, Chem. Rev., 2014, 114, 1709–1742.
6 (a) S. Ding and N. Jiao, Angew. Chem., Int. Ed., 2012, 51, 9226–9237;
(
b) Y. Wang, F. Wang, C. Zhang, J. Zhang, M. Li and J. Xu, Chem.
Commun., 2014, 50, 2438–2441.
7
8
(a) K. Weissermel and H. Arpe, Industrial Organic Chemistry: Impor-
tant Raw Materials and Intermediates, Wiley-VCH Verlag GmbH & Co.
KGaA, ch. 2, 2008; (b) X. Li, K. Liu, X. Xu, L. Ma, H. Wang, D. Jiang,
Q. Zhang and C. Lu, Chem. Commun., 2011, 47, 7860–7862.
(a) M. W. Farlow and H. Adkins, J. Am. Chem. Soc., 1935, 57, 2222–2223;
(b) P. Haynes, L. H. Slaugh and J. F. Kohnle, Tetrahedron Lett., 1970, 11,
2
2
To confirm whether the Ir-catalyzed reaction occurs on the solid
surface of Ir/HSA-TiO -A, it was removed by filtration from the
2
reaction mixture after reaction. Continuous treatment of the result-
ing filtrate under similar reaction conditions did not afford any
products. In addition, inductively coupled plasma (ICP) analysis
showed the absence of Ir species in the filtrate (detection limit of
3
65–368; (c) T. Imai, US Pat., 4 269 998, 1981; (d) P. G. Jessop, Y. Hsiao,
T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1994, 116, 8851–8852;
e) O. Kr ¨o cher, R. A. K ¨o ppel, M. Fr o¨ ba and A. Baiker, J. Catal., 1998,
178, 284–298; ( f ) L. Schmid, M. Rohr and A. Baiker, Chem. Commun.,
999, 2303–2304.
(
1
0.1 ppm), revealing that no leaching occurred during the reaction.
9
X. Cui, Y. Zhang, Y. Deng and F. Shi, Chem. Commun., 2014, 50,
189–191.
Compared with the fresh Ir/HSA-TiO -A sample, there was no
2
significant change of morphology and no aggregation of particles 10 J. Liu, C. Guo, Z. Zhang, T. Jiang, H. Liu, J. Song, H. Fan and B. Han,
Chem. Commun., 2010, 46, 5770–5772.
2
for the used Ir catalyst (Fig. S9, ESI†). The recovered Ir/HSA-TiO -A
1
1 (a) M. Haneda and H. Hamada, J. Catal., 2010, 273, 39–49; (b) S. K.
Singh and Q. Xu, Chem. Commun., 2010, 46, 6545–6547; (c) L. He,
J. Q. Wang, Y. Gong, Y. M. Liu, Y. Cao, H. Y. He and K. N. Fan,
Angew. Chem., Int. Ed., 2011, 50, 10216–10220.
sample was reusable for a subsequent reaction and exhibited a high
product yield and specific productivity after the 5th reuse (Fig. 2).
In conclusion, we have demonstrated that partially reduced
1
2 (a) R. Tanaka, M. Yamashita and K. Nozaki, J. Am. Chem. Soc., 2009,
iridium oxide clusters dispersed on TiO
performance for efficient and practical synthesis of DMF from CO
H and NHMe under mild aqueous conditions. A preliminary study
2
exhibited superior
1
31, 14168–14169; (b) A. Azua, S. Sanz and E. Peris, Chem. – Eur. J.,
2
,
2011, 17, 3963–3967; (c) T. J. Schmeier, G. E. Dobereiner,
R. H. Crabtree and N. Hazari, J. Am. Chem. Soc., 2011, 133,
2
2
9
274–9277; (d) R. Lalrempuia, M. Iglesias, V. Polo, P. J. S. Miguel,
using other amine substrates showed that the present Ir-catalyzed
protocol is not limited to the DMF synthesis via CO hydrogenation
Table S1, ESI†). The catalytic system present here, in which the
F. J. F. Alvarez, J. J. P. Torrente and L. A. Oro, Angew. Chem., Int. Ed.,
2012, 51, 12824–12827; (e) W. H. Wang, J. F. Hull, J. T. Muckerman,
E. Fujita and Y. Himeda, Energy Environ. Sci., 2012, 5, 7923–7926;
2
(
(
f ) J. F. Hull, Y. Himeda, W. H. Wang, B. Hashiguchi, R. Periana,
x
unique characteristics of bifunctional Ir/IrO clusters can enable
D. J. Szalda, J. T. Muckerman and E. Fujita, Nat. Chem., 2012, 4,
a facile reductive activation of CO
2
in a cooperative manner, may
383–388.
9
140 | Chem. Commun., 2014, 50, 9138--9140
This journal is ©The Royal Society of Chemistry 2014