C O M M U N I C A T I O N S
differences in charge transport across π-conjugated molecular wires.
We are currently adding low-temperature capabilities to our crossed-
wire molecular electronics test-bed to further unravel the relative
importance of internal rotations and bond-length alternation in
molecular wires.
Acknowledgment. Financial support from the Defense Ad-
vanced Research Project Agency (DARPA) is gratefully acknowl-
edged. J.C.Y. is thankful to the National Research Council for a
fellowship.
Supporting Information Available: Synthesis of compounds, SAM
preparation, and bond lengths for OPE and OPV (PDF). This material
Figure 2. Experimental (A) and theoretical (B) plots of current (logarithmic
scale) as a function of the applied bias voltage for junctions formed from
the three compounds studied. The theoretical traces are given in units of
the quantum of current (2e2/h V).
References
(1) (a) Chidsey, C. E. D. Science 1991, 251, 919-922. (b) Sachs, S. B.; Dudek,
S. P.; Hsung, R. P.; Sita, L. R.; Smalley, J. F.; Newton, M. D.; Feldberg,
S. W.; Chidsey, C. E. D. J. Am. Chem. Soc. 1997, 119, 10563-10564.
(c) Weber, K.; Hockett, L.; Creager, S. J. Phys. Chem. B 1997, 101, 8286-
8291. (d) Creager, S.; Yu, C. J.; Bamdad, C.; O’Sonnor, S.; MacLean,
T.; Lam, E.; Chong, Y.; Olsen, G. T.; Luo, J.; Gozin, M.; Kayyem, J. F.
J. Am. Chem. Soc. 1999, 121, 1059-1064. (e) Sikes, H. D.; Smalley, J.
F.; Dudek, S. P.; Cook, A. R.; Newton, M. D.; Chidsey, C. E. D.; Feldberg,
S. W. Science 2001, 291, 1519-1523.
(2) (a) Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.; Burgin, T.
P.; Jones, L.; Allara, D. L.; Tour, J. M.; Weiss, P. S. Science 1996, 271,
1705-1707. (b) Cygan, M. T.; Dunbar, T. D.; Arnold, J. J.; Bumm, L.
A.; Shedlock, N. F.; Burgin, T. P.; Jones, L.; Allara, D. L.; Tour, J. M.;
Weiss, P. S. J. Am. Chem. Soc. 1998, 120, 2721-2732. (c) Wold, D. J.;
Frisbie, C. D. J. Am. Chem. Soc. 2001, 123, 5549-5556. (d) Wold, D. J.;
Haag, R.; Rampi, M. A.; Frisbie, C. D. J. Phys. Chem. B 2002, 106, 2813-
2816.
(3) (a) Closs, G. L.; Miller, J. R. Science 1988, 240, 440-447. (b) Fox, L.
S.; Kozik, M.; Winkler, J. R.; Gray, H. B. Science 1990, 247, 1069-
1071. (c) Helms, A.; Heiler, D.; McLendon, G. J. Am. Chem. Soc. 1992,
114, 6227-6238. (d) Davis, W. B.; Svec, W. A.; Ratner, M. A.;
Wasielewski, M. R. Nature 1998, 396, 60-63.
(4) (a) Holmlin, R. E.; Haag, R.; Chabinyc, M. L.; Ismagilov, R. F.; Cohen,
A. E.; Terfort, A.; Rampi, M. A.; Whitesides, G. M. J. Am. Chem. Soc.
2001, 123, 5075-5085. (b) Holmlin, R. E.; Ismagilov, R. F.; Haag, R.;
Mujica, V.; Ratner, M. A.; Rampi, M. A.; Whitesides, G. M. Angew.
Chem., Int. Ed. 2001, 40, 2316-2320.
π-conjugation of OPV systems as compared to that of OPE (in
which the phenylene rings are freely rotating at room temperature)
explain the more facile charge transport in OPV.1b,d,e,10 Charge
transport calculations as a function of coplanarity demonstrate that
conductance is reduced when the rings of an OPE system are
perpendicular to each other.11 While we do not dispute that the
increased coplanarity of OPV should enhance its conductivity
relative to OPE (at least in isolated molecules), our calculations
indicate a second important contribution. Because the transport
calculations reported in Figure 2B were performed for individual
molecules rigidly fixed at their energy minimized structures
(approximately planar for both molecules), the differences in
conductance cannot be attributed to disruption of π-conjugation
from phenylene ring rotation. Instead, the higher conductivity is
due to the smaller bond-length alternation in OPV as compared to
that in OPE.
If we consider the molecules as one-dimensional crystals, we
see that the short (1.218 Å) ethynylene linkage in OPE disrupts
the periodicity of the π-conjugated molecular backbone (1.41 (
0.01 Å) more drastically than the vinylene linkage in OPV (1.352
Å, backbone ) 1.41 ( 0.03 Å) (see Supporting Information). We
also know, from studies of conducting polymers, the size of the
energy gap between the highest occupied and lowest unoccupied
molecular orbitals (HOMO-LUMO gap) is directly related to the
extent of bond-length alternation,12 and thus the greater bond-length
alternation in OPE causes a larger HOMO-LUMO gap relative to
the OPV system (Table 1). Because, at low applied bias, transport
is dominated by charge carrier tunneling inside the HOMO-LUMO
gap, the smaller gap of OPV leads to higher conductance. In the
language of solid-state physics, OPV can be thought of as having
a smaller Peierls distortion than OPE and thus acts more like a
one-dimensional metal.13
(5) (a) Samanta, M. P.; Tian, W.; Datta, S.; Henderson, J. I.; Kubiak, C. P.
Phys. ReV. B 1996, 53, R7626-R7629. (b) Magoga, M.; Joachim, C. Phys.
ReV. B 1997, 56, 4722-4729. (c) Joachim, C. Superlattices Microstruct.
2000, 28, 305-315.
(6) Kushmerick, J. G.; Holt, D. B.; Yang, J. C.; Naciri, J.; Moore, M. H.;
Shashidhar, R. Phys. ReV. Lett. 2002, 086802.
(7) (a) Mujica, V.; Kemp, M.; Ratner, M. A. J. Chem. Phys. 1994, 101, 6849-
6855. (b) Datta, S.; Tian, W.; Hong, S.; Reifenberger, R.; Henderson, J.;
Kubiak, C. P. Phys. ReV. Lett. 1997, 79, 2530-2533. (c) Emberly, E. G.;
Kirczenow, G. Phys. ReV. B 1998, 55, 10911-10920. (d) Hong, S.;
Reifenberger, R.; Tian, W.; Datta, S.; Henderson, J.; Kubiak, C. P.
Superlattices Microstruct. 2000, 28, 289-303.
(8) Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge
University Press: Cambridge, 1995.
(9) It must be noted that the transport calculations reported here are performed
on a single molecule, while the experiments are on an ensemble of
molecules in a SAM. Taking this into account along with the likely
difference in packing densities of SAMs formed from OPE and OPV
would bring the measurement and calculation into even better relative
agreement (specifically increasing the measured conductance of OPV with
respect to OPE).
(10) Dudek, S. P.; Sikes, H. D.; Chidsey, C. E. D. J. Am. Chem. Soc. 2001,
123, 8033-8038.
(11) Seminario, J. M.; Derosa, P. A. J. Am. Chem. Soc. 2001, 123, 12418-
12419.
In summary, we have measured the I-V characteristics of three
classes of molecules with a crossed-wire tunnel junction. The
measured I-V characteristics are in good agreement with I-V
characteristics calculated from extended Hu¨ckel theory coupled with
a Green’s function approach and point out that the degree of bond-
length alternation needs to be considered to fully understand
(12) (a) Heeger, A. J. J. Phys. Chem. B 2001, 105, 8475-8491. (b) Farchioni,
R., Grosso, G., Eds. Organic Electronic Materials: Conjugated Polymers
and Low Molecular Weight Organic Solids; Springer: New York, 2001;
Vol. 41.
(13) Peierls, R. E. Quantum Theory of Solids; Oxford University Press: London,
1955.
JA027090N
9
J. AM. CHEM. SOC. VOL. 124, NO. 36, 2002 10655