2440
J. Am. Chem. Soc. 2001, 123, 2440-2441
Ultrafast Molecular Logic Gate Based on Optical
Switching between Two Long-Lived Radical Ion Pair
States
Aaron S. Lukas, Patrick J. Bushard, and
Michael R. Wasielewski*
Department of Chemistry, Northwestern UniVersity
EVanston, Illinois 60208-3113
ReceiVed NoVember 29, 2000
Decreasing the size of electronic devices introduces complexi-
ties arising from quantum tunneling effects and the localization
of charge in discrete electronic orbitals. Single molecules specif-
1
-10
11-13
ically designed for applications as switches,
wires,
and
rectifiers1
4-17
can take advantage of these discrete electronic
Figure 1. Energy level diagram for 1.
configurations. Moreover, theoretical work strongly supports the
idea that reversible photoinduced electron-transfer reactions can
electronic couplings to produce an ultrafast molecular logic gate.
The long-lived output states of this gate can be read out optically
by using the spectroscopic signatures of the radical ions.
serve as the basis for a molecular switch.1
8-20
Previous work in
this laboratory has demonstrated that the electron transport
direction in a branched molecule having a single donor and two
acceptors can be switched by using femtosecond laser pulses.21
However, strong electronic coupling between the electronic states
of the two branches leads to relatively short, subnanosecond
lifetimes for the reduced acceptor on one of the branches. The
work presented here shows that a branched donor-acceptor array,
which employs a bridging group with a high-energy LUMO, can
be used to provide both optimized free energies of reaction and
*
To whom correspondence should be addressed. E-mail: wasielew@
chem.northwestern.edu.
1) de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. Nature 1993, 364,
(
4
2-44.
(
2) Gust, D.; Moore, T. A.; Moore, A. L. IEEE Eng. Med. Biol. 1994, 94,
5
8-66.
(
3) DelMedico, A.; Fielder, S. S.; Lever, A. B. P.; Pietro, W. J. Inorg.
Chem. 1995, 34, 1507-13.
4) Wagner, R. W.; Lindsey, J. S.; Seth, J.; Palaniappan, V.; Bocian, D. F.
J. Am. Chem. Soc. 1996, 118, 3996-3997.
5) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J.
(
(
M.; McCoy, C. P.; Radmacher, J. T.; Rice, T. E. Chem. ReV. 1997, 97, 1515-
In 1 (NI-ANI-NMI-PI) the electron donor is 4-(N-piperidinyl)-
naphthalene-1,8-dicarboximide (ANI), whose ground-state elec-
tronic absorption is centered at 400 nm in toluene. The excited-
state energy of ANI is 2.80 eV, while those of NI, PI, and NMI
are all >3 eV. The one-electron oxidation potential of the ANI
electron donor is 1.2 V vs SCE, while the one-electron reduction
1
566.
(6) Willner, I. W. B. J. Mater. Chem. 1998, 8, 2543-2556.
(7) Tour, J. M.; Kozaki, M.; Seminario, J. M. J. Am. Chem. Soc. 1998,
1
20, 8486-8493.
(
8) Gobbi, L.; Seiler, P.; Diedrich, F. Angew. Chem., Int. Ed. Engl. 1996,
5, 5, 674-678.
9) Collier, C. P.; Wong, E. W.; Belohradsky, M.; Raymo, F. M.; Stoddart,
J. F.; Kuekes, P. J.; Williams, R. S.; Heath, J. R. Science 1999, 285, 391-
94.
10) Collier, C. P.; Matterstei, G.; Wong, E. W.; Luo, Y.; Beverly, K.;
3
(
potentials of the NI, PI, and NMI electron acceptors are -0.53,
3
22
-
0.79, and -1.41 V vs SCE, respectively. The free energies of
(
reaction for the formation of the various ion pair intermediates
Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R. Science 2000, 289,
1
172-1175.
within 1 were calculated by using spectroscopic/electrochemical
(
11) Barigelletti, F.; Flamigni, L. Chem. Soc. ReV. 2000, 29, 1-12.
12) Davis, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R. Nature
23
methods developed earlier, Figure 1. These data show that
(
1
electron transfer from the *ANI excited state to NI is strongly
1
998, 396, 60-63.
(13) Tans, S. J.; Devoret, M. H.; Dai, H.; Thess, A.; Smalley, R. E.;
favored energetically. Selective photoexcitation of ANI within 1
with 420 nm, 130 fs laser pulses results exclusively in the reaction
Geerligs, L. J.; Dekker: C. Nature 1997, 386, 474-477.
(
(
(
14) Waldeck, D. H.; Beratan, D. N. Science 1993, 261, 576-577.
1
-
+
NI- *ANI-NMI-PI f NI -ANI -NMI-PI in toluene, which occurs
with a time constant of τ ) 120 ps, as indicated by the formation
of the strong electronic transitions in the visible spectrum
15) Metzger, R. M. Acc. Chem. Res. 1999, 32, 950-957.
16) Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999,
86, 1550-1552.
2
(17) Chen, J.; Wang, W.; Reed, M. A.; Rawlett, A. M.; Price, D. W.; Tour,
-
-1
-1
characteristic of NI at 480 (ꢀ ) 23 000 M cm ) and 605 nm
(7 000 M cm ). Hence, the first photon provides for selective
charge transport down one branch of the bifurcated molecular
array. The resulting NI -ANI -NMI-PI ion pair has a τ ) 160
ns lifetime in toluene.
J. M. Appl. Phys. Lett. 2000, 77, 1224-1226.
-1
-1 24
(
18) Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277-283.
19) Hopfield, J. J.; Onuchic, J. N.; Beratan, D. N. Science 1988, 241, 817-
(
8
19.
-
+
(
20) Metzger, R. M. AdV. Chem. Ser. 1994, 240, 81-129.
(21) Lukas, A. S.; Miller, S. E.; Wasielewski, M. R. J. Phys. Chem. B
2
000, 104, 931-940.
-
-
+
Selective excitation of NI within the NI -ANI -NMI-PI ion
(22) Electrochemical data were obtained by cyclic voltammetry at a Pt
pair with a 480 nm, 130 fs laser pulse at t ) 2 ns following its
working electrode in butyronitrile containing 0.1 M tetra-n-butylammonium
perchlorate.
-
+
formation results in the production of *NI -ANI -NMI-PI. The
(23) Greenfield, S. R.; Svec, W. A.; Gosztola, D.; Wasielewski, M. R. J.
4
.0 eV energy of this state is calculated by adding the 1.6 eV
Am. Chem. Soc. 1996, 118, 6767-6777.
24) Wiederrecht, G. P.; Niemczyk, M. P.; Svec, W. A.; Wasielewski, M.
R. J. Am. Chem. Soc. 1996, 118, 81-88.
-
energy of the lowest electronic transition of NI to the energy of
(
the ion pair.21 The intrinsic excited-state lifetime of *NI is 260
-
1
0.1021/ja0041122 CCC: $20.00 © 2001 American Chemical Society
Published on Web 02/14/2001