Ruthenium-Catalyzed [2+2] Cycloadditions
162.7, 154.0, 132.1, 130.1, 128.8(2), 128.3, 76.2, 60.0, 44.6, 41.3,
40.1, 38.2, 33.7, 27.7, 21.2, 14.3. Visible peaks for minor isomer
7a: δ 170.6, 155.6, 132.2, 127.0, 72.3, 45.0, 41.3, 40.8, 39.7, 38.6,
34.0, 27.8.
Computational Details
All computations in this study were carried out with the Gaussian
9823 suite of programs. The Becke three-parameter hybrid func-
tional24 combined with the Lee, Yang, and Parr (LYP) correlation
functional,25 B3LYP, was used. The Los Alamos effective core
potential plus double-ú basis set LANL2DZ26 was employed on
ruthenium, and the 6-31G(d) basis set27 was used for the rest of
the atoms. All electronic structures were closed shells. Harmonic
vibrational frequencies were computed to verify the nature of the
stationary points. Transition-state structures were characterized by
one imaginary frequency and are first-order saddle points. To ensure
that the transition states link the products to the expected reactants,
the normal modes corresponding to the imaginary frequencies were
animated. All reactant and product structures exhibited zero
imaginary frequencies and are minima. The relative Gibbs free
energies (∆G values) were obtained by taking into account zero-
point energies, thermal motion, and entropy contribution at standard
conditions (temperature of 298 K, pressure of 1 atm). Natural bond
orbital (NBO) analyses were performed with the NBO program19
in Gaussian 98. The resulting natural population analysis (NPA)
charge,19b,c Wiberg indices,21 and orbital interactions22 were used
for a detailed study of the electronic structure and bond interactions.
The solvation energies, G298(THF), were computed using the polarized
continuum model of Tomasi and co-workers18 as implemented in
Gaussian 98. THF (ꢀ ) 7.58), which was used in the experiments,
is specified as the solvent in the solvation model.
Fractional recrystallization of the above mixture in EtOAc/
hexanes (1:9) afforded a pure sample of 6a as white crystals. The
regiochemistry of 6a was determined by NMR experiments (1H
NMR, APT, HCOSY, HSQC, HMBC, and NOESY or GOESY
experiments) and confirmed by X-ray crystallography. Rf ) 0.39
(EtOAc/hexanes ) 1:9). Mp 71 °C. GC (HP-1 column): retention
time for major isomer 6a ) 30.571 min. IR (CH2Cl2) νmax (cm-1
)
3066, 2969, 2937, 1734, 1704, 1617, 1492, 1448, 1374, 1297, 1244,
1
1217, 1204, 1136, 1109. H NMR (CDCl3, 400 MHz) δ 8.02 (m,
2H), 7.31 (m, 3H), 4.63 (dm, 1H, J ) 5.3 Hz), 4.22 (q, 2H, J )
7.1 Hz), 2.79 (d, 1H, J ) 3.3 Hz), 2.64 (d, 1H, J ) 3.3 Hz), 2.35
(br. s, 1H), 2.33 (d, 1H, J ) 4.0 Hz), 2.00 (s, 3H), 1.73 (dd, 1H,
J ) 13.3, 7.3 Hz), 1.58 (ddd, 1H, J ) 13.3, 3.9, 2.7 Hz), 1.37 (br.
s, 2H), 1.31 (t, 3H, J ) 7.1 Hz). 13C NMR (APT, CDCl3, 100 MHz)
δ 170.5, 162.5, 153.9, 132.0, 130.0, 128.7, 128.6, 128.2, 76.1, 59.9,
44.5, 41.2, 40.0, 38.1, 33.6, 27.6, 21.1, 14.2. Anal. Calcd for
C20H22O4: C, 73.60; H, 6.79. Found C, 73.56; H, 6.77.
Cycloadducts 11m and 12m (Scheme 4). Yield: 88% (white
solid, 11m/12m ) 15:1 measured by GC and 1H NMR). Rf ) 0.62
(EtOAc/hexanes ) 2:3). GC (HP-1 column): retention time for
major isomer 11m ) 20.016 min and for minor isomer 12m )
20.533 min. IR (CH2Cl2) νmax (cm-1) 2985, 2929, 2853, 2233, 1717,
1705, 1699, 1650, 1615, 1450, 1371, 1336, 1267, 1249, 1206, 1185,
Acknowledgment. This work was supported by NSERC
(Canada) and Boehringer Ingelheim (Canada). W.T. thanks
Boehringer Ingelheim (Canada) Ltd. for a Young Investigator
Award, and R.W.J. thanks the Ontario government and NSERC
(Canada) for postgraduate scholarships (OGS and NSERC PGS
B).
1
1121, 1035. H NMR (CDCl3, 400 MHz) δ 4.19 (q, 2H, J ) 7.1
Hz), 3.42 (s, 0.06H), 3.33 (s, 0.94H), 2.79 (tt, 1H, J ) 11.4, 3.3
Hz), 2.71 (d, 0.94H, J ) 3.2 Hz), 2.65 (dd, 1H, J ) 19.2, 4.4 Hz),
2.63-2.66 (m, 0.12H), 2.55 (m, 1.88H), 2.47 (d, 0.06H), 2.27 (dd,
0.94H, J ) 19.2, 4.2 Hz), 2.25 (dd, 0.06H, J ) 19.2, 4.2 Hz), 1.76
(m, 5H), 1.69 (dm, 1H, J ) 11.2 Hz), 1.42 (dm, 1H, J ) 11.2 Hz),
1.30 (t, 3H, J ) 7.1 Hz), 1.14-1.35 (m, 5H). 13C NMR (APT,
CDCl3, 100 MHz) major isomer 11m: δ 190.1, 163.8, 162.1, 129.8,
111.5, 111.4, 80.3, 60.1, 45.6, 43.2, 42.5, 39.1, 38.8, 33.7, 31.7,
30.7, 30.3, 25.8, 25.60, 25.57, 14.3. Visible peaks for minor isomer
12m: δ 45.4, 44.6, 41.5, 39.3, 34.1.
Supporting Information Available: Detailed experimental
procedures, full characterization of new compounds, and listing of
Cartesian coordinates and total energies for the optimized geom-
etries of calculated species. This material is available free of charge
JO060103L
The major isomer 11m was isolated from the above mixture using
a Chromatotron (EtOAc/hexanes ) 1:9, 1:4) as a white solid. The
regiochemistry of 11m was characterized through the use of NMR
experiments (1H NMR, APT, HSQC, and NOESY) and confirmed
by X-ray crystallography. Mp 88-89 °C. GC (HP-1 column):
retention time ) 19.921 min. 1H NMR (CDCl3, 400 MHz) δ 4.19
(q, 2H, J ) 7.1 Hz), 3.33 (s, 1H), 2.79 (tm, 1H, J ) 11.2 Hz), 2.71
(d, 1H, J ) 3.1 Hz), 2.65 (dd, 1H, J ) 19.2, 4.4 Hz), 2.55 (m,
2H), 2.27 (dd, 1H, J ) 19.2, 4.2 Hz), 1.68-1.78 (m, 6H), 1.42
(dm, 1H, J ) 11.2 Hz), 1.30 (t, 3H, J ) 7.1 Hz), 1.19-1.32 (m,
5H). 1H NMR (C6D6, 400 MHz) δ 3.96 (q, 2H, J ) 7.1 Hz), 2.83
(s, 1H), 2.73 (tt, 1H, J ) 11.6, 3.2 Hz), 2.16 (d, 1H, J ) 3.1 Hz),
1.96 (d, 1H, J ) 4.0 Hz), 1.84 (d, 1H, J ) 3.1 Hz), 1.72 (ddd, 1H,
J ) 19.1, 4.0, 0.9 Hz), 1.50-1.61 (m, 5H), 1.47 (dd, 1H, J ) 19.1,
4.1 Hz), 1.22 (ddm, 1H, J ) 11.1, 4.1 Hz), 1.03-1.13 (m, 3H),
0.91-1.01 (m, 2H), 0.94 (t, 3H, J ) 7.1 Hz), 0.53 (dd, 1H, J )
11.1, 0.9 Hz). 13C NMR (APT, CDCl3, 100 MHz) δ 190.1, 163.9,
162.1, 129.8, 111.53, 111.45, 80.4, 60.1, 45.6, 43.3, 42.5, 39.1,
38.8, 33.7, 31.7, 30.7, 30.3, 25.8, 25.61, 25.58, 14.3. Anal. Calcd
for C21H24O2N2: C, 74.97; H, 7.19. Found C, 74.87; H, 7.15.
(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.;
Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari,
K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen,
W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle,
E. S.; Pople, J. A. Gaussian 98, revision A.11; Gaussian, Inc.: Pittsburgh,
PA, 2001.
(24) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(25) Lee, C.; Yang, W.; Parr, R. G. Phys. ReV. B 1988, 37, 785.
(26) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(27) (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971,
54, 724. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972,
56, 2257. (c) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28,
213. (d) Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209. (e) Gordon,
M. S. Chem. Phys. Lett. 1980, 76, 163.
J. Org. Chem, Vol. 71, No. 10, 2006 3803