8
DEEPTHI ET AL.
[8] (a) D. K. Kim, J. H. Baek, C. M. Kang, M. A. Yoo, J. W. Sung,
D. K. Kim, K. W. Kim, Int. J. Cancer. 2000, 87(5), 629.
(b) P. Liu, R. Du, X. Yu, Med. Sci. Monit. 2019, 25, 1283.
[9] P. P. Wu, K. Zhang, Y. J. Lu, P. He, S. Q. Zhao, Eur. J. Med.
Chem. 2014, 80, 502.
42.6, 38.2, 37.7, 37.5, 36.9, 36.7, 32.6, 30.9, 29.6, 28.4, 27.0,
26.3, 24.9, 22.4, 21.6, 20.8, 18.1, 17.7, 16.0, 15.9, 14.4, 13.1.
LC/MS-ESI: m/z calculated for [C35H48O3S + 2]: 550.332;
found: 550.330.
[10] B. Saraswat, P. K. Visen, D. P. Agarwal, Phytother. Res. 2000,
14(3), 163.
4.6.2 | Procedure for synthesis of
compound 10
[11] D. Chattopadhyay, G. Arunachalam, A. B. Mandal, T. K. Sur,
S. C. Mandal, S. K. J. Bhattacharya, Ethnopharmacol. 2002, 82
(2–3), 229.
[12] B. Meunier, Acc. Chem. Res. 2008, 41, 69.
A mixture of compounds 4 (1 equiv., 0.182 mmol, 100 mg)
and 13 (1 equiv., 0.182 mmol, 0.035 mg) was refluxed
in 10-mL acetone at 57ꢀC for 10 hours in the presence
of KI (2 equiv., 0.364 mmol, 60.42 mg)/K2CO3 (2 equiv.,
0.364 mmol, 49.14 mg). Solvent was removed under reduced
pressure, and reaction mixture was worked up using
DCM/brine solution and was dried over Na2SO4. Residue was
purified by silica gel column chromatography, and product
was eluted with 10% EtOAc: hexane solvent in 64% yield.
Melting point 204-207ꢀC. FTIR (neat, ν cm−1): 2928, 2865,
1732, 1654, 1575, 1382. 1−H NMR (400 MHz, CDCl3):
8.06-8.02 (m, 2H), 7.71 (s, 1H), 7.55-7.48 (m, 3H), 7.33-7.31
(m, 1H), 5.74 (s, 1H), 5.40-5.23 (m, 2H), 2.52-2.49 (m, 3H),
2.2381-2.23 (m, 6H), 1.74-1.6 (m, 7H), 1.58-1.40 (m, 5H),
1.39-1.30 (m, 3H), 1.25 (s, 1H), 1.17 (s, 2H), 1.14-1.10 (m, 6H),
1.09-1.06 (m, 4H), 1.01-0.97 (m, 4H), 0.96-0.88 (m, 3H). 13C
NMR (100 MHz, CDCl3): 206.5, 175.6, 165.7, 162.6, 139.4,
133.9, 132.5, 132.0, 131.7, 130.8, 129.8, 129.1, 128.9, 127.4,
126.9, 126.8, 123.9, 123.2, 59.5, 55.2, 54.8, 52.6, 47.9, 47.3, 44.9,
43.8, 38.7, 38.6, 37.7, 35.8, 31.6, 29.7, 29.6, 28.4, 27.3, 23.7, 21.7,
21.0, 20.8, 20.4, 19.0, 18.5, 17.1, 16.9. HRMS-ESI (m/z) calcu-
lated for [C44H54N2O4S -1]: 706.3804; found: [M-1]: 705.3800.
[13] P. -P. Wu, B. -J. Zhang, X.-P. Cui, Y. Yang, Z.-Y. Jiang, Z.-
H. Zhou, Y. Y. Zhong, Y.-Y. Mai, Z. Ouyang, H.-S. Chen,
J. Zheng, S.-Q. Zhao, K. Zhang, Sci. Rep. 2017, 7, 45578.
[14] S. Kar, G. Ramamoorthy, S. Sinha, M. Ramanan, J. K. Pola,
N. R. Golakoti, J. B. Nanubolu, S. K. Sahoo, R. B. Dandamudi,
M. Doble, New J. Chem. 2019, 43, 9012.
[15] N. S. Ratheesh, A. Deepthi, K. Adarsh, S. Ind. J. Chem. Sec B
2016, 55B(5), 598.
[16] J. B. Harborne, Phytochemical Methods - A Guide to Modern
Technique of Plant Analysis, 2nd ed., Dordrecht: Springer
Science & Business Media, 1984.
[17] S. C. Gnoatto, A. Dassonville-Klimpt, S. Da Nascimento, K.;
Gosmann, G.; Moslemi, S. Eur. J. Med. Chem. 2008, 43(9), 1865.
[18] T. Honda, H. J. Finlay, G. W. Gribble, N. Suh, M. B. Sporn,
Chem. Lett. 1997, 7(13), 1623.
[19] S. -X. Hua, R. -Z. Huang, M. -Y. Ye, Y. -M. Pan, G. -Y. Yao,
Y. Zhang, H. -S. Wang, Eur. J. Med. Chem. 2015, 95, 435.
[20] Z. -Y. Wei, K. -Q. Chi, K. -S. Wang, J. Wu, L. -P. Liu, H. -R. Piao,
Bioorg. Med. Chem. Lett. 2018, 28, 1797.
[21] S. Bajaj, V. Asati, J. Singh, P. P. Roy, Eur. J. Med. Chem. 2015,
97, 124.
[22] K. D. Rainsford, S. Tsang, R. H. Hunt, N. Al-Jehani,
Inflammopharmacology. 1995, 3(4), 299.
[23] Y. Li, W. He, T. Liu, Q. Zhang, Mol. Diagn. Ther. 2010, 14(6), 351.
[24] (a)F. C. Bernstein, T. F. Koetzle, G. J. Williams, E. F. Meyer Jr..,
M. D. Brice, J. R. Rodgers, M. J. Tasumi, Mol. Bio. 1977, 112(3),
535; (b)B. I. O. V. I. A. Dassault Systèmes, Discovery Studio Client
v 18.01.100.18065, San Diego, Dassault Systèmes 2018.
[25] M. C. Walker, J. K. Gierse, Mol. Biol. 2010, 644, 131.
[26] J. -B. Méric, S. Rottey, K. Olaussen, J. -C. Soria, D. Khayat,
O. Rixe, J. -P. C. Spano, Rev. Oncol. 2006, 59, 51.
ACKNOWLEDGMENTS
Ms Deepa Krishnan thank Govt. of Kerala for provid-
ing e-grants for her MPhil research project. All authors
thank CLIF, University of Kerala, for providing instru-
mentation facilities and Biogenix Research Center for
in vitro analysis.
ORCID
SUPPORTING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of this
article.
REFERENCES
[1] D. J. Newman, G. M. Cragg, J. Nat. Prod. 2007, 70, 461.
[2] M. Q. Zhang, Curr. Op. Biotech. 2007, 18, 478.
[3] Q. W. Zhang, L. -G. Lin, W. -C. Ye, Chin. Med. 2018, 13, 20.
[4] J. Liu, J. Ethnopharmacol. 1995, 49(2), 57.
[5] (a) T. B. Ayeleso, M. G. Matumba, E. Mukwevho, Molecules
2017, 22, 1915. (b) S. Mlala, A. O. Oyedeji, M. Gondwe,
O. O. Oyedeji, Molecules 2019, 24, 2751.
[6] M. C. Liu, S. J. Yang, L. H. Jin, D. Y. Hu, W. Xue, B. An Song,
S. Yang, Eur. J. Med. Chem. 2012, 58, 128.
[7] M. K. Shanmugam, X. Dai, A. P. Kumar, B. K. Tan, G. Sethi,
A. Bishayee, Biochem. Pharmacol. 2013, 85(11), 1579.
How to cite this article: Deepthi A, Krishnan D,
Sanju A. Semisynthesis of ursolic acid-2-(2-
thienylidene)-oxadiazole hybrid molecule and an
evaluation of its COX inhibition property.