ACS Catalysis
Page 4 of 5
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
instances, the 3-aminopyridin-2-one motif has the potential
ability to form multiple hydrogen bonds or to act as a
chelating ligand. Bioactive compounds including this
(4) Severina, I. S.; Pyatakova, N. V.; Postnikov, A. B.; Preobrazhenskaya,
M. N.; Khropov, Y. V. Eur. J. Pharmacol. 2004, 483, 127-132.
5) Xu, F.; Kong, D. K.; He, X. Y.; Zhang, Z.; Han, M.; Xie, X. Q.; Wang,
P.; Cheng, H. R.; Tao, M. F.; Zhang, L. P.; Deng, Z. X.; Lin, S. J. J. Am.
Chem.Soc. 2013, 135, 1739-1748.
(
important building block include a thrombin inhibitor, an
interleukin-2 inducible T-cell kinase inhibitor and the human
immunodeficiency virus type reverse transcriptase
Furthermore, a series of substituted 3-hydroxy
(6) (a) Chan, B. K.; Ciufolini, M. A. J. Org. Chem. 2007, 72, 8489-8495;
(b) Boger, D. L.; Cassidy, K. C.; Nakahara, S. J. Am. Chem. Soc. 1993,
1
1
15, 10733-10741; (c) Preobrazhenskaya, M. N.; Holpnekozlova, N. V.;
Lazhko, E. I. J. Antibiot. 1992, 45, 227-234.
(7) (a) Katagiri, M.; Yamamoto, S.; Hayaishi, O. J. Biol. Chem. 1962, 237,
pridin-2(1H)-ones, 5-hydroxy-pyrimidin -4(3H)-ones and 3-
hydroxyquinolin-2(1H)-ones are effective inhibitors of
influenza endonuclease by acting as bimetal chelating ligands
2
413-2414; (b) Nakano, H.; Wieser, M.; Hurh, B.; Kawai, T.; Yoshida, T.;
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Yamane, T.; Nagasawa, T. Eur. J. Biochem. 1999, 260, 120-126; (c)
Jimenez, J. I.; Canales, A.; Jimenez-Barbero, J.; Ginalski, K.; Rychlewski,
L.; Garcia, J. L.; Diaz, E. Proc. Natl. Acad. Sci. USA 2008, 105, 11329-
11334.
at the active site of the enzyme. In addition, a number of
functionalized 5-aminopyrimidin-4(3H)-ones are orally active
inhibitors of human neutrophil elastase.
(8) (a) Niviere, V.; Fieschi, F.; Decout, J. L.; Fontecave, M. J. Biol. Chem.
In conclusion, an efficient and environmentally friendly
electrophilic aromatic hydroxylation of picolinic acids with
ipso-decarboxylation has been developed and applied to the
conversion of streptonigrin to streptonigrone. The reaction
utilizes atmospheric oxygen as the terminal oxidant which is
activated by the reduced form of natural flavins in an aqueous
solution. The reaction not only works for streptonigrin
analogues, but can also be applied to other activated picolinic
acid derivatives with electron donating groups to produce
useful building blocks for bioactive compounds.
1999, 274, 18252-18260; (b) Lin, S. J.; Van Lanen, S. G.; Shen, B. J. Am.
Chem. Soc. 2008, 130, 6616-6623.
(9) (a) Ball , S.; Bruice , T. C. J. Am. Chem. Soc. 1979, 101, 4017 –4019;
(b) Minidis, A. B.; Backvall, J. E. Chem. Eur. J. 2001, 7, 297-302; (c)
Murahashi, S. I.; Oda, T.; Masui, Y. J. Am. Chem. Soc. 1989, 111, 5002-
5
003; (d) Imada, Y.; Iida, H.; Ono, S.; Murahashi, S. J. Am. Chem. Soc.
2003, 125, 2868-2869.
(10) (a) Mazzini , C.; Lebreton , J.; Furstoss , R. J. Org. Chem. 1996, 61, 8
–9; (b) Murahashi, S.; Ono, S.; Imada, Y. Angew. Chem. Int. Ed. 2002,
1
14, 2472-2474; (c) Imada, Y.; Iida, H.; Murahashi, S.; Naota, T. Angew.
Chem. Int. Ed. 2005, 44, 1704-1706.
11) Chen, S.; Hossain, M. S.; Foss, F. W. Acs Sustain. Chem. Eng. 2013,
(
1, 1045-1051.
ASSOCIATED CONTENT
(12) (a) Imada, Y.; Osaki, M.; Noguchi, M.; Maeda, T.; Fujiki, M.;
Kawamorita, S.; Komiya, N.; Naota, T. Chemcatchem 2015, 7, 99-106; (b)
Smit, C.; Fraaije, M. W.; Minnaard, A. J. J. Org. Chem. 2008, 73, 9482-
Supporting Information. Reaction procedures and analytical
9
485; (c) Imada, Y.; Kitagawa, T.; Ohno, T.; Iida, H.; Naota, T. Org. Lett.
2010, 12, 32-35; (d) Marsh, B. J.; Heath, E. L.; Carbery, D. R. Chem.
Commun. 2011, 47, 280-282.
(13) (a) Murray, A. T.; Matton, P.; Fairhurst, N. W. G.; John, M. P.;
Carbery, D. R. Org. Lett. 2012, 14, 3656-3659; (b) Chen, S.; Hossein, M.
S.; Foss, F. W. Org. Lett. 2012, 14, 2806-2809; (c) Chen, S.; Foss, F. W.
Org. Lett. 2012, 14, 5150-5153.
AUTHOR INFORMATION
Corresponding Author
*
(
14) (a) Imada, Y.; Naota, T., Chem. Rec. 2007, 7, 354-361; (b) Iida, H.;
Imada, Y.; Murahashi, S. I. Org. Biomol. Chem. 2015, 13 (28), 7599-7613;
c) Gelalcha, F. G. Chem. Rev. 2007, 107, 3338-3361; (d) de Gonzalo, G.;
Funding Sources
(
This work is financially supported by the National Natural Sci-
ence Foundation of China (NNSFC, 31425001 for SL; 31370082
for ZD) and the research grants from MOE of China, and the Leo-
poldina Fellowship Program (German National Academy of Sci-
ences Leopoldina, LPDS 2013-12 for NLB).
Fraaije, M. W. Chemcatchem 2013, 5, 403-415; (e) Cibulka, R. Eur. J.
Org. Chem. 2015, 2015, 915-932.
(15) (a) Lowe, H. J.; Clark,. W. M. J. Biol. Chem. 1956, 221 (2), 983-992;
(b) Loechler, E. L.; Hollocher,. T. C. J. Am. Chem. Soc. 1980, 102, 7312-
7321.
(16) (a) Zhou, L.; Liu, X.; Ji, J.; Zhang, Y.; Hu, X.; Lin, L.; Feng, X. J.
Am. Chem. Soc. 2012, 134, 17023-17026; (b) Renz, M.; Meunier, B. Eur.
J. Org. Chem. 1999, 737-750; (c) Brink, t., G.-J.; Arends, I. W. C. E.;
Sheldon, R. A. Chem. Rev. 2004, 104, 4105–4124; (d) Matsumoto, M.;
Kobayashi, K.; Hotta, Y. J. Org. Chem. 1984, 49, 4740–4741.
(17) Massey V. J. Biol. Chem. 1994, 269, 69-83.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
We would like to thank the instrumental analysis center of SJTU
and Professor Kaifeng Hu at Kunming Institute of Botany for
assistance with NMR spectroscopy. We also thank Professor Ang
Li at Shanghai Institute of Organic Chemistry for helpful discus-
sion about the catalytic mechanism.
(18) Quarroz, D. Swiss Patent CH644847, 1984.
(19) Lu, T. B.; Markotan, T.; Ballentine, S. K.; Giardino, E. C.; Spurlino,
J.; Brown, K.; Maryanoff, B. E.; Tomczuk, B. E.; Damiano, B. P.; Shukla,
U.; End, D.; Andrade-Gordon, P.; Bone, R. F.; Player, M. R.. J. Med.
Chem. 2010, 53, 1843-1856.
(20) Charrier, J. D.; Miller, A.; Kay, D. P.; Brenchley, G.; Twin, H. C.;
REFERENCES
Collier, P. N.; Ramaya, S.; Keily, S. B.; Durrant, S. J.; Knegtel, R. M. A.;
Tanner, A. J.; Brown, K.; Curnock, A. P.; Jimenez, J. M. J. Med. Chem.
2011, 54, 2341-2350.
(1) (a) Herlt, A. J.; Rickards, R. W.; Wu, J. P. J. Antibiot. 1985, 38, 516-
5
18; (b) Chiu, Y. Y.; Lipscomb, W. N. J. Am. Chem. Soc. 1975, 97, 2525-
(21) Saari, W. S.; Wai, J. S.; Fisher, T. E.; Thomas, C. M.; Hoffman, J. M.;
2530; (c) Doyle, T. W.; Balitz, D. M.; Grulich, R. E.; Nettleton, D. E.;
Gould, S. J.; Tann, C. H.; Moews, A. E. Tetrahedron Lett. 1981, 22, 4595-
Rooney, C. S.; Smith, A. M.; Jones, J. H.; Bamberger, D. L.; Goldman, M.
E.; Obrien, J. A.; Nunberg, J. H.; Quintero, J. C.; Schleif, W. A.; Emini, E.
A.; Anderson, P. S. J. Med. Chem. 1992, 35, 3792-3802.
(22) Sagong, H. Y.; Bauman, J. D.; Patel, D.; Das, K.; Arnold, E.; LaVoie,
E. J. J. Med. Chem. 2014, 57, 8086-8098.
4
598; (d) Wang, H. S.; Yeo, S. L.; Xu, J.; Xu, X. L.; He, H.; Ronca, F.;
Ting, A. E.; Wang, Y.; Yu, V. C.; Sim, M. M. J. Nat. Prod. 2002, 65 (5),
21-724; (e) Ciufolini, M. A.; Bishop, M. J. J. Chem. Soc. Chem. Comm.
1993, 1463-1464.
2) (a) White, H. L.; White, J. R. Mol. Pharmacol. 1968, 4, 549-565; (b)
7
(23) Ohmoto, K.; Yamamoto, T.; Okuma, M.; Horiuchi, T.; Imanishi, H.;
(
Odagaki, Y.; Kawabata, K.; Sekioka, T.; Hirota, Y.; Matsuoka, S.; Nakai,
H.; Toda, M.; Cheronis, J. C.; Spruce, L. W.; Gyorkos, A.; Wieczorek, M.
J. Med. Chem. 2001, 44, 1268-1285.
Beall, H. D.; Mulcahy, R. T.; Siegel, D.; Traver, R. D.; Gibson, N. W.;
Ross, D. Cancer Res. 1994, 54, 3196-3201; (c) McBride, T. J.; Oleson, J.
J.; Woolf, D. Cancer Res. 1966, 26, 727-732.
(3) Bolzan, A. D.; Bianchi, M. S. Mutat. Res. 2001, 488, 25-37.
ACS Paragon Plus Environment