Paper
HTM) was increased with increased voltage due to the higher
gradient of the hole density in the HTM. As evidenced by the
above investigations, the HTM performance of TPA-BP-OXD was
better than that of PEDOT:PSS under the optimized conditions.
Journal of Materials Chemistry C
(s
7 V. M. Arivunithi, S. S. Reddy, V. G. Sree, H.-Y. Park, J. Park,
Y.-C. Kang, E.-S. Shin, Y.-Y. Noh, M. Song and S.-H. Jin, Adv.
Energy Mater., 2018, 8, 1801637.
8 (a) Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu,
Conclusions
html, accessed: July 2019.
9
W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim,
D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh and
S. I. Seok, Science, 2017, 356, 1376.
In summary, we designed, and well optimized conditions with a
simple synthetic approach were used to synthesize, a novel
D–p–A based HTM, TPA-BP-OXD. It exhibited a hole mobility of
ꢀ
5
2
ꢀ1 ꢀ1
10 J. Seo, J. H. Noh and S. I. Seok, Acc. Chem. Res., 2016, 49, 562.
3
.12 ꢁ 10 cm V
s
, and possessed a suitable energy level
: 411 1C),
1
1
1
1
1
1 I. Cho, N. J. Jeon, O. K. Kwon, D. W. Kim, E. H. Jung, J. H. Noh,
J. W. Seo, S. I. Seok and S. Park, Chem. Sci., 2017, 8, 734.
2 B. Susrutha, L. Giribabu and S. P. Singh, Chem. Commun.,
(ꢀ5.10 eV), good solubility, and high thermal stability (T
d
which enable it to act as a HTM for PSCs. Notably, the improved
charge transportation of TPA-BP-OXD is due to the p–p interactions.
The dopant-free TPA-BP-OXD based PSCs exhibited good device
performance on rigid ITO (15.46%) and flexible PET substrates
2015, 51, 14696.
3 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and
H. J. Snaith, Science, 2012, 338, 643.
4 M. Liu, M. B. Johnston and H. J. Snaith, Nature, 2013,
(12.90%). Also, they showed long term stability of over 700 h.
Efficient extraction of holes from the perovskite and quick trans-
portation to the electrode could be the reason for achieving a higher
PCE. The hydrophobic nature of TPA-BP-OXD enhanced the stability
of the device. Remarkably, forward and reverse scans of dopant-free
TPA-BP-OXD based devices displayed identical performance with
negligible hysteresis through excellent compatibility of the linear
shaped D–p–A type HTM. Overall, this study demonstrates an
efficient linear shaped D–p–A based HTM which can enhance the
PCE with less hysteresis, and good stability in i-PSCs on rigid and
flexible substrates as well.
501, 395.
5 K. C. Wang, J. Y. Jeng, P. S. Shen, Y. C. Chang, E. W. G. Diau,
C. H. Tsai, T. Y. Chao, H. C. Hsu, P. Y. Lin, P. Chen,
T.-F. Guao and T.-C. Wen, Sci. Rep., 2014, 4, 4756.
1
1
1
1
2
6 Y. J. Jeon, S. Lee, R. Kang, J. E. Kim, J. S. Yeo, S. H. Lee,
S. S. Kim, J. M. Yun and D. Y. Kim, Sci. Rep., 2014, 4, 6953.
7 H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan,
Z. Hong, J. You, Y. Liu and Y. Yang, Science, 2014, 345, 542.
8 N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi and
N.-G. Park, J. Am. Chem. Soc., 2015, 137, 8696.
9 L. Meng, J. You, T.-F. Guo and Y. Yang, Acc. Chem. Res.,
2016, 49, 155.
0 M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini,
J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi,
K.-H. Dahmen, F. D. Angelis, A. Abate, A. Hagfeldt,
G. Pozzi, M. Graetzel and M. K. Nazeeruddin, Nat. Energy,
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
2016, 1, 15017.
This work was supported by the National Research Foundation
2
1 T. Malinauskas, M. Saliba, T. Matsui, M. Daskeviciene,
S. Urnikaite, P. Gratia, R. Send, H. Wonneberger, I. Bruder,
M. Gr ¨a tzel, V. Getautis and M. K. Nazeeruddin, Energy
Environ. Sci., 2016, 9, 1681.
(NRF-2018R1A5A1025594) of the Ministry of Science and ICT.
This work was also supported by the Fundamental Research
Program (PNK 6100) of the Korea Institute of Materials Science
(KIMS).
2
2 J. Zhang, B. Xu, M. B. Johansson, M. Hadadian, J. P. C.
Baena, P. Liu, Y. Hua, N. Vlachopoulos, E. M. J. Johansson,
G. Boschloo, L. Sun and A. Hagfeldt, Adv. Energy Mater., 2016,
Notes and references
1
502536.
A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. 23 Z. H. Bakr, Q. Wali, A. Fakharuddin, L. S. Mende,
Chem. Soc., 2009, 131, 6050.
T. M. Brown and R. Jose, Nano Energy, 2017, 34, 271.
H. Choi, C.-K. Mai, H.-B. Kim, J. Jeong, S. Song, G. C. Bazan, 24 (a) Z.-K. Wang, M. Li, Y.-G. Yang, Y. Hu, H. Ma, X.-Y. Gao
1
2
3
J. Y. Kim and A. J. Heeger, Nat. Commun., 2015, 6, 7348.
S. Ameen, M. A. Rub, S. A. Kosa, K. A. Alamry, M. S. Akhtar,
H.-S. Shin, H.-K. Seo, A. M. Asiri and M. K. Nazeeruddin,
ChemSusChem, 2016, 9, 10.
and L.-S. Liao, Adv. Mater., 2016, 28, 6695; (b) R. Iacobellis,
S. Masi, A. Rizzo, R. Grisorio, M. Ambrico, S. Colella,
P. F. Ambrico, G. P. Suranna, A. Listorti and L. D. Marco,
ACS Appl. Energy Mater., 2018, 1, 1069.
4
5
6
S. F. Volker, S. Collavini and J. L. Delgado, ChemSusChem, 25 T. Liu, K. Chen, Q. Hu, R. Zhu and Q. Gong, Adv. Energy
015, 8, 3012.
Mater., 2016, 6, 1600457.
W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and 26 Y. Wang, S. Bai, L. Cheng, N. Wang, J. Wang, F. Gao and
S. I. Seok, Science, 2015, 348, 1234.
W. Huang, Adv. Mater., 2016, 28, 4532.
N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and 27 F. D. Giacomo, A. Fakharuddin, R. Jose and T. M. Brown,
S. I. Seok, Nature, 2015, 517, 476.
Energy Environ. Sci., 2016, 9, 3007.
2
This journal is ©The Royal Society of Chemistry 2019
J. Mater. Chem. C, 2019, 7, 13440--13446 | 13445