1316
H. Huang, W. Hu
LETTER
R3O2C
(7) (a) Wang, Y. H.; Zhu, Y. X.; Chen, Z. Y.; Mi, A.; Hu, W. H.;
Doyle, M. P. Org. Lett. 2003, 5, 3923. (b) Wang, Y. H.;
Zhu, Y. X.; Chen, Z. Y.; Mi, A.; Hu, W. H. Chem. Commun.
2004, 2486. (c) Lu, C. D.; Liu, H.; Chen, Z. Y.; Hu, W. H.;
Mi, A. Org. Lett. 2005, 7, 83. (d) Lu, C. D.; Chen, Z. Y.;
Hu, W. H.; Mi, A. Chem. Commun. 2005, 2624. (e) Huang,
H. X.; Wang, Y. H.; Chen, Z. Y.; Hu, W. H. Adv. Synth.
Catal. 2005, 347, 531. (f) Huang, H. X.; Wang, Y. H.; Chen,
Z. Y.; Hu, W. H. Synlett 2005, 2498.
(8) (a) Aliev, A. E.; Hilton, S. T.; Motherwell, W. B.; Selwood,
D. L. Tetrahedron Lett. 2006, 47, 2387. (b) Hilton, S. T.;
Motherwell, W. B.; Selwood, D. L. Synlett 2004, 2609.
(c) Bjosvik, H.; Bravo, P.; Crucianelli, M.; Volonterio, A.;
Zanda, M. Tetrahedron: Asymmetry 1997, 8, 2817.
(9) For metal-catalyzed S–H insertion, see: (a) Paulissen, R.;
Hayez, E.; Hubert, A. J.; Teyssie, P. Tetrahedron Lett. 1974,
607. (b) Trost, B. M. Chem. Rev. 1978, 78, 363.
CO2R3
HN
N
CO2R
Rh
3
8
N
3
CO2R3
N
CO2
R1
CO2R3
R2
S
R3O2C
N
A
N
H
SR2
CO2R
6
R2SH
2
9
R1
R1
[1,2]-aza shift
B
R2
R1
S
H
CO2R
7
CO2R
R2S
CO2R
CO2R3
[1,2]-H shift
R1
Rh
N
R3O2C
N
S-H insertion
H
8
4
5
Scheme 5 A proposed mechanism of the reaction
In conclusion, we have reported a reaction of diazoace-
tates, thiols, and azodicarboxylates to give sulfur-contain-
ing N,S-acetals in good yield. Although the product type
is similar to that from the previous reported ammonium
ylide trapping process, the current reaction proceeds via
an unusual [1,2]-aza shift of the sulfonium ylides 9.
(c) Mckervey, M. A.; Ratananulul, P. Tetrahedron Lett.
1982, 23, 2509. (d) Moody, C. J.; Taylor, R. J. Tetrahedron
1990, 46, 6501.
(10) Crystal Structure Data for 4h. C22H26N2O7S, Mw = 462.51,
colorless, Triclinic, P1, a = 10.343 (2), b = 10.796 (2),
c = 11.630 (2) Å, a = 106.74 (2)°, b = 102.61 (2)°,
g = 101.02 (2)°, V = 1167.93 (46) Å3, Z = 2, T = 287 (2) K,
r
calcd = 1.315 Mg·m–3, F(000) = 488, l = 0.71073 Å,
m = 0.183 mm–1, GOF = 0.977, R(F) = 0.0435 and
wR(F)2 = 0.1061 for 4930 observed reflections, I > 4s,
1.91° < q < 25.50°. CCDC 299823 contains the
supplementary crystallographic data for this paper. These
data can be obtained free of charge via
Acknowledgment
We are grateful for financial support from the Chinese Academy of
Sciences and National Science Foundation of China (Grant No.
20472080). We thank Prof. Kaibei Yu of Chengdu Institute of
Organic Chemistry for X-ray measurement.
Cambridge Crystallographic Data Centre, 12, Union Road,
Cambridge CB21EZ, UK; fax +44 (1223)336033; or
deposit@ ccdc.cam.ac.uk].
References and Notes
(11) A similar ring-expansion N-shift of sulfonium ylide was
reported: Crow, W. D.; Gosney, I.; Ormiston, R. A. J. Chem.
Soc., Chem. Commun. 1983, 643.
(12) Typical Procedure for the Reaction of Diazo Compounds
with Thiols and DEAD
(1) (a) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96,
223. (b) Doyle, M. P.; Mckervey, M. A.; Ye, T. Modern
Catalytic Methods for Organic Synthesis with Diazo
Compounds; John Wiley and Sons: New York, 1998.
(c) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263.
(2) For examples of [1,2] Stevens rearrangement of sulfonium
ylides derived from metal carbenoids, see: (a)Kametani,T.;
Yukawa, H.; Honda, T. J. Chem. Soc., Chem. Commun.
1986, 651. (b) Kim, G.; Kang, S.; Kim, S. N. Tetrahedron
Lett. 1993, 34, 7627. (c) Moody, C. J.; Taylor, R. J.
Tetrahedron Lett. 1988, 29, 6005.
(3) For examples of [2,3]-sigmatropic rearrangement of
ammonium ylides derived from metal carbenoids, see:
(a) Ma, M.; Peng, L. L.; Li, C. K.; Zhang, X.; Wang, J. B. J.
Am. Chem. Soc. 2005, 127, 15016. (b) Doyle, M. P.;
Tamblyn, W. H.; Bagbers, V. J. Org. Chem. 1981, 46, 5094.
(c) Vedejs, E.; Hagen, J. P. J. Am. Chem. Soc. 1975, 97,
6878. (d) Doyle, M. P.; Griffin, J. H.; Chinn, M. S.; van
Leusen, D. J. Org. Chem. 1981, 46, 5094.
To a refluxing CH2Cl2 (8 mL) solution of Rh2(OAc)4 (2.7
mg, 1 mol%), benzenethiol 2a (66.0 mg, 0.60 mmol) and
DEAD (143.6 mg, 0.83 mmol) under argon atmosphere was
added methyl phenyl diazoacetate (1b, 96 mg, 0.55 mmol) in
CH2Cl2 (4 mL) over 1 h via a syringe pump. After comple-
tion of the addition, the reaction mixture was cooled to r.t.
Then, the solvent was removed. The crude product was
purified by flash chromatography on silica gel by using 20%
EtOAc–light PE as eluent to give a white solid 4a in 70%
yield.
Methyl 2-(N,N¢-Dicarboethoxyhydrazinyl)-2-phenyl-2-
(phenylthio)acetate (4a)
Rf = 0.22 (30% EtOAc–light PE); mp 126.5–128.4 °C. 1H
NMR (300 MHz, CDCl3): d = 8.08 (d, J = 7.2 Hz, 2 H),
7.20–7.39 (m, 8 H), 6.51 (s, 1 H), 4.27–4.34 (m, 2 H), 3.96–
4.04 (m, 2 H), 3.66 (s, 1 H), 1.04–1.43 (m, 6 H). 13C NMR
(75 MHz, CDCl3): d = 168.5, 156.6, 155.7, 137.9, 137.3,
130.2, 129.3, 128.6, 128.4, 127.9, 127.7, 81.7, 63.1, 62.2,
52.8, 14.5, 13.9. HRMS: m/z calcd for C21H24N2O6S1:
455.1247; found: 455.1237 [M + Na]+.
(4) Huxtable, R. J. Biochemistry of Sulfur; Plenum Press: New
York, 1986.
(5) (a) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1962,
84, 867. (b) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc.
1965, 87, 1353. (c) Li, A. H.; Dai, L. X.; Aggarwal, V. K.
Chem. Rev. 1997, 97, 2341.
(6) Sawada, Y.; Oku, A. J. Org. Chem. 2004, 69, 2899.
Synlett 2007, No. 8, 1314–1316 © Thieme Stuttgart · New York