RSC Advances
Paper
ꢀ
nr
1
sexp ¼ (A + A )
(4)
r
Acknowledgements
According to above discussion, we can nd that the value of h
mainly depends on the values of the lifetimes and the I02/I01
ratio. The quantum efficiency must be high when the lifetimes
and red-orange ratio are large. As clearly shown in Table 1, the
luminescent efficiencies of three ZnO-containing hybrid
This work was supported by the National Natural Science
Foundation of China (20971100, 91122003), and the Program
for New Century Excellent Talents in University (NCET 2008-08-
0398).
-
materials have been calculated in the following order SEP–ZnO-
Notes and references
MAA–PEMA
>
SEP–ZnO-MAA–PHFMA
>
SEP–ZnO-MAA–
PHEMA. We can nd that the material SEP–ZnO-MAA–PEMA
has the largest I02/I01 ratio and the longest lifetime, so its
quantum efficiency is the highest. Furthermore, the absolute
quantum yields are also measured using an integrating sphere
attachment, showing a similar order to the calculated data,
except for the higher value.
1 (a) C. L. Hill, Chem. Rev., 1998, 98, 1; (b) M. T. Pope and
A. M u¨ ller, Angew. Chem., Int. Ed. Engl., 1991, 30, 34.
2 (a) T. Yamase, E. Ishikawa, K. Fukaya, H. Nojiri, T. Taniguchi
and T. Atake, Inorg. Chem., 2004, 43, 8150; (b) N. Casa n˜ -
Pastor and P. G ´o mez-Romero, Front. Biosci., 2004, 9, 1759.
3 (a) V. Luca and J. M. Hook, Chem. Mater., 1997, 9, 2731; (b)
E. Coronado and C. Mingotaud, Adv. Mater., 1999, 11, 869;
(
c) M. Chemente-leon, B. Agricole, C. Mingotaud,
C. J. Gomez-Garcfa, E. Coronado and P. Delhaes, Angew.
Chem., Int. Ed. Engl., 1997, 36, 1114.
Conclusions
We have prepared the polyoxometalate Na EuW O $32H O
4 R. D. Peacock and T. J. R. Weakley, J. Chem. Soc. A, 1971,
1836.
5 M. J. Stillman and A. J. Thomson, J. Chem. Soc., Dalton Trans.,
1976, 1138.
9
10 36
2
and the surfactant DMDA and encapsulated the poly-
oxometalate into the surfactant to obtain surfactant-encap-
sulated POM clusters (SEP). Then, in the presence of benzoyl
peroxide (BPO) as the initiator, the synthesized SEP, ZnO-MAA
and three different ester units were covalently bonded by an
additional polymerization reaction. In contrast, we also
synthesized hybrid materials that do not contain ZnO-MAA.
The ZnO-containing materials have a strong red emission and
one weak broad emission peak corresponding to the emission
of ZnO, while the hybrids without ZnO show a stronger orange
emission than red emission and have no emission band of
ZnO. Meanwhile, the luminescence lifetime and emission
quantum efficiency have also been compared in two kinds of
different materials. Compared to the hybrids without the ZnO
unit, the introduction of ZnO nanoparticles modied by the
methacrylic group changes the red/orange ratio, to change the
6 (a) G. Blasse, G. J. Dirkens and F. Zonnevijlle, J. Inorg. Nucl.
Chem., 1981, 43, 2847; (b) G. Blasse, G. J. Dirkens and
F. Zonnevijlle, Chem. Phys. Lett., 1981, 83, 449.
7 (a) M. Sugeta and T. Yamase, Bull. Chem. Soc. Jpn., 1993, 66,
444; (b) K. Binnemans, Chem. Rev., 2009, 109, 4283.
8 G. Decher, Science, 1997, 277, 1232.
9 (a) W. F. Bu, L. X. Wu and A. Q. Tang, J. Colloid Interface Sci.,
2004, 269, 472; (b) F. Bu, W. Li, H. L. Li, L. X. Wu and
A. Q. Tang, J. Colloid Interface Sci., 2004, 274, 200; (c)
W. F. Bu, H. L. Li, W. Li, L. X. Wu, C. X. Zhai and
Y. Q. Wu, J. Phys. Chem. B, 2004, 108, 12276; (d) Y. Y. Zhao,
Y. Li, W. Li, Y. Q. Wu and L. X. Wu, Langmuir, 2010, 26,
18430.
3
+
chemical environment around the Eu . The luminescence 10 (a) W. Bu, J. Zhang, L. Wu and A. C. Tang, Chin. J. Chem.,
color can be adjusted by changing the excitation wavelength.
Composing the violet-blue excitation and orange or red
2002, 20, 1514; (b) W. Bu, L. Wu, X. Hou, H. Fan, C. Hu
and X. Zhang, J. Colloid Interface Sci., 2002, 251, 120.
emission, a white luminescence can be observed for the whole 11 (a) S. Polarz, B. Smarsly and M. Antonietti, ChemPhysChem,
hybrid system. This provides a new strategy to obtain white
luminescence materials using hybrids.
2001, 2, 457; (b) D. Volkmer, A. Du Chesne, D. G. Kurth,
H. Schnablegger, P. Lehmann, M. J. Koop and A. M u¨ ller,
J. Am. Chem. Soc., 2000, 122, 1995; (c) D. G. Kurth,
P. Lehmann, D. Volkmer, H. C ¨o lfen, M. J. Koop, A. M u¨ ller
and A. Du Chesne, Chem.–Eur. J., 2000, 6, 385.
Table 1 Photoluminescent data of the resulting materials
12 (a) H. L. Li, W. Qi and W. Li, Adv. Mater., 2005, 17, 2688; (b)
M. Xu, C. L. Liu, H. L. Li, W. Li and L. X. Wu, J. Colloid
Interface Sci., 2008, 323, 176.
a
b
Hybrids
I02/I01
s (ms)
h (%)
1
3 (a) T. R. Zhang, C. Spitz, M. Antonietti and C. F. J. Faul,
Chem.–Eur. J., 2005, 11, 1001; (b) G. Hungerford, M. Green
and K. Suhling, Phys. Chem. Chem. Phys., 2007, 9, 6012.
4 (a) R. C. Wang, C. P. Liu, J. L. Huang and S. J. Chen, Appl.
Phys. Lett., 2005, 87, 053103; (b) A. B. Djurisic, Y. H. Leung,
K. H. Tam, L. Ding, W. K. Gew, H. Y. Chen and S. Gwa,
Appl. Phys. Lett., 2006, 88, 103107; (c) H. Zeng, G. Duan,
Y. Li, S. Yang, X. Xu and W. Cai, Adv. Funct. Mater., 2010,
20, 561.
SEP–ZnO-MAA–PEMA
SEP–ZnO-MAA–PHFMA
SEP–ZnO-MAA–PHEMA
SEP–PEMA-1
5.44
5.05
4.66
0.64
0.25
0.70
0.63
0.60
1.20
1.11
24.6 (14.1)
20.9 (13.0)
20.3 (12.5)
35.3
1
SEP–PEMA-2
31.0
a
5
7
0 2
The luminescent lifetimes of D / F transition for SEP–ZnO-MAA–
5 7
PEMA (PHFMA, PHEMA) and of
1
0 1
D / F transition for SEP–PEMA-
b
(2). The luminescent quantum yields for absolute value using
integrating sphere and calculated data from lifetime and spectrum in
bracket.
3324 | RSC Adv., 2014, 4, 3318–3325
This journal is © The Royal Society of Chemistry 2014