1260
L.-L. Zhu et al. / Tetrahedron 66 (2010) 1254–1260
aqueous environment as the slope is big (S1>0.18), compared with
the ‘Locked’ state when this system reaches photostationary state or
encapsulation equilibrium state as the slopes are small (S2,
S3<0.18). The ‘Activated’ and ‘Locked’ states in this system are just
corresponding to the turnon and turnoff of the fluorescent viscosity
sensor function. By the way, S3¼0.01231 is smaller than
S2¼0.06255, which features the fact that the conversion rate of
supramolecular assembly is higher than that of photoisomerization
in this system, for the fluorescence of some residual unconverted
species will slightly ascend with increase of viscosity.
with this article can be found in the online version, at doi:10.1016/
References and notes
1. (a) Kuimova, M. K.; Botchway, S. W.; Parker, A. W.; Balaz, A.; Collins, H. A.;
Anderson, H. L.; Suhling, K.; Ogilby, P. R. Nat. Chem. 2009, 1, 69–73; (b)
Haidekker, M. A.; Brady, T. P.; Lichlyter, D.; Theodorakis, E. A. Bioorg. Chem.
2005, 33, 415–425; (c) Ghiggino, K. P.; Hutchison, J. A.; Langford, S. J.; Latter,
M. J.; Lee, M. A. P.; Lowenstern, P. R.; Scholes, C.; Takezaki, M.; Wilman, B. E.
Adv. Funct. Mater. 2007, 17, 805–813; (d) Luby-Phelps, K.; Mujumdar, S.;
Mujumdar, R. B.; Ernst, L. A.; Galbraith, W.; Waggoner, A. S. Biophys. J. 1993,
65, 236–242.
4. Conclusions
2. (a) Zhu, D.; Haidekker, M. A.; Lee, J.-S.; Won, Y.-Y.; Lee, J. C.-M. Macromolecules
2007, 40, 7730–7732; (b) Haidekker, M. A.; Brady, T. P.; Lichlyter, D.; Theo-
dorakis, E. A. J. Am. Chem. Soc. 2006, 128, 398–399.
In summary, a new rotor-containing fluorescent dye has been
synthesized and shows a good viscosity-sensitive behavior due to
the environment-dependent non-radiative decay. With the re-
versible dual-mode switch driven by photoirradiation or assembly/
3. (a) Blanco, M.-J.; Jime´nez, M. C.; Chambron, J.-C.; Heitz, V.; Linke, M.; Sauvage,
J.-P. Chem. Soc. Rev. 1999, 28, 293–305; (b) Balzani, V.; Credi, A.; Venturi, M.
ChemPhysChem 2008, 9, 202–220; (c) Browne, W. R.; Feringa, B. L. Nat.
Nanotechnol. 2006, 1, 25–35; (d) Kinbara, K.; Aida, T. Chem. Rev. 2005, 105,
1377–1400; (e) Pease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.;
Heath, J. R. Acc. Chem. Res. 2001, 34, 433–444; (f) Tian, H.; Wang, Q. C. Chem.
Soc. Rev. 2006, 35, 361–374; (g) Kay, E. R.; Leigh, D. A.; Zerbetto, F. Angew.
Chem., Int. Ed. 2007, 46, 72–191; (h) van Delden, R. A.; Ter Wiel, M. K. J.;
Pollard, M. M.; Vicario, J.; Koumura, N.; Feringa, B. L. Nature 2005, 437, 1337–
1340; (i) de Silva, A. P.; Uchiyama, S. Nat. Nanotechnol. 2007, 2, 399–410; (j)
Kottas, G. S.; Clarke, L. I.; Horinek, D.; Michl, J. Chem. Rev. 2005, 105, 1281–
1376; (k) Willner, I.; Basnar, B.; Willner, B. Adv. Funct. Mater. 2007, 17, 702–717;
(l) Guo, X.-F.; Zhang, D.-Q.; Zhang, G.-X.; Zhu, D.-B. J. Phys. Chem. B 2004, 108,
11942–11945; (m) Ji, F. Y.; Zhu, L.-L.; Zhang, D.; Chen, Z.-F.; Tian, H. Tetrahedron
2009, 65, 9081–9085.
disassembly process of b-cyclodextrin, the viscosity sensitivity of
this molecular rotor could be locked and activated. These tunable
viscosity-sensitive states can be distinguished by fluorescent sig-
nals. With establishment of a slope method, the viscosity-sensitive
‘Activated’ and the ‘Locked’ states of this dye could be quantita-
tively estimated.
This system provides a paradigm for the design and construction
of multi-tunable molecular-scale viscosity sensor with character-
4. (a) Haidekker, M. A.; Theodorakis, E. A. Org. Biomol. Chem. 2007, 5, 1669–1678;
(b) Loutfy, R. O.; Arnold, B. A. J. Phys. Chem. 1982, 86, 4205–4211; (c) Iwaki, T.;
Torigoe, C.; Noji, M.; Nakanishi, M. Biochemistry 1993, 32, 7589–7592.
5. Zhu, L.-L.; Li, X.; Ji, F. Y.; Ma, X.; Wang, Q. C.; Tian, H. Langmuir 2009, 25, 3482–3486.
6. (a) Liu, Y.; Chen, Y. Acc. Chem. Res. 2006, 39, 681–691; (b) Wenz, G.; Han, B. H.;
Mu¨ller, A. Chem. Rev. 2006, 106, 782–817; (c) Klotz, E. J. F.; Claridge, T. D. W.;
Anderson, H. L. J. Am. Chem. Soc. 2006, 128, 15374–15375; (d) Qu, D. H.; Wang,
Q. C.; Ren, J.; Tian, H. Org. Lett. 2004, 6, 2085–2088; (e) Sakamoto, K.; Taka-
shima, Y.; Yamaguchi, H.; Harada, A. J. Org. Chem. 2007, 72, 459–465; (f) Qu, D.
H.; Wang, Q. C.; Tian, H. Angew. Chem., Int. Ed. 2005, 44, 5296–5299; (g)
Coulston, R. J.; Onagi, H.; Lincoln, S. F.; Easton, C. J. J. Am. Chem. Soc. 2006, 128,
14750–14751; (h) Park, J. W.; Song, H. J.; Cho, Y. J.; Park, K. K. J. Phys. Chem. C
2007, 111, 18605–18614; (i) Ma, N.; Wang, Y.; Wang, Z.; Zhang, X. Langmuir
ized and read by fluorescent outputs. Indeed, the b-cyclodextrin
encapsulation in this system performs efficiently and precisely on
the tunable viscosity-sensitive behavior. There is a drawback of the
relative inconvenient operation of the assembly/disassembly pro-
cess yet. Our next goal is to translate this kind of molecular vis-
cometers to a rotaxane-like architecture, which may bring in
a high-speed tunable way with molecular-scale movement.
Acknowledgements
}
2006, 22, 3906–3909; (j) Xu, Y.; Bolisetty, S.; Ballauff, M.; Muller, A. H. E. J. Am.
This work was supported by NSFC/China (20972053, 20603009),
National Basic Research 973 Program (2006CB806200), partially by
Scientific Committee of Shanghai.
Chem. Soc. 2009, 131, 1640–1641.
7. Compound 1 was fully characterized by 1H NMR, 13C NMR spectroscopy and high-
resolution mass spectrometry (HRMS) as described in Supplementary data.
8. (a) Park, J. W.; Song, H. J. Org. Lett. 2004, 6, 4869–4872; Wang, Y.; Ma, N.; Wang,
Z.; Zhang, X. Angew. Chem., Int. Ed. 2007, 46, 2823–2826.
Supplementary data
9. (a) Kodaka, M. J. Phys. Chem. A 1998, 102, 8101–8103; (b) Zhu, L. L.; Ma, X.; Ji, F. Y.;
Wang, Q. C.; Tian, H. Chem.dEur. J. 2007, 13, 9216–9222; (c) Liu, Y.; Zhao, Y. L.;
Zhang, H. Y.; Fan, Z.; Wen, G. D.; Ding, F. J. Phys. Chem. B 2004,108, 8836–8843; (d)
Wang, Q. C.; Ma, X.; Qu, D. H.; Tian, H. Chem.dEur. J. 2006, 12, 1088–1096.
10. If only the absorbed light intensity Iab is known, the emission intensity Iem and
13C NMR, and HRMS (ESI) spectra of compound 1; 2D ROESY
NMR spectrum of 1 mixed with b-CD; TEM images for a further
magnified observation of Self-organized Conformational Switches
the quantum yield are directly and proportionally related through IemNIabF
.
Thus we could directly make use of fluorescent intensity readout in this
measurement.
of 1 in water; the measurement of CAC; the association constant
between 1 and b-CD; the inclusion of 4 and b-CD; Data for the
11. Fo¨rster, T.; Hoffmann, G. Z. Physiol. Chem. 1971, 75, 63–76.
12. (a) Kuimova, M. K.; Yahioglu, G.; Levitt, J. A.; Suhling, K. J. Am. Chem. Soc. 2008,
130, 6672–6673; (b) Levitt, J. A.; Kuimova, M. K.; Yahioglu, G.; Chung, P.-H.;
Suhling, K.; Phillips, D. J. Phys. Chem. C. 2009, 113, 11634–11642.
13. Here the normalized fluorescent intensity is defined as F/F0, while F is the
emission signals under each the viscosity condition, whereas F0 is the one in
the solvent without any addition of dextran.
fluorescence life-time of compound 1 in mixtures of ethylene glycol
and glycerol with different viscosity; Lockable viscosity sensitivity
of 1 expressed by fluorescent emissions below CAC; Repetitive
cycles of light-and ring-induced lockable viscosity sensitivity of 1
described in fluorescence signal. Supplementary data associated