6956
S. Cunha, M. T. Rodrigues, Jr. / Tetrahedron Letters 47 (2006) 6955–6956
Table 1. Isolated guanidine yields
References and notes
R2
S
H
N
R3
H
1. Review on synthesis: Manimala, J. C.; Anslyn, E. Eur. J.
Org. Chem. 2002, 3909–3922; Representative papers: (a)
Katritzky, A.; Rogovoy, B. V.; Cai, X.; Kirichenko, N.;
Kovalenko, K. V. J. Org. Chem. 2004, 69, 309–313; (b)
Gers, T.; Kunce, D.; Markowski, P.; Izdebski, J. Synthesis
2004, 37–42; (c) Miller, C. A.; Batey, R. A. Org. Lett. 2004,
6, 699–702; (d) Bowser, A. M.; Madalengoitia, J. S. Org.
Lett. 2004, 6, 3409–3412; (e) Porcheddu, A.; Giacomelli, G.;
Chighine, A.; Masala, S. Org. Lett. 2004, 6, 4925–4927.
2. (a) Organobismuth Chemistry; Suzuki, H., Matano, Y., Eds.;
Elsevier: Amsterdam, 2001; (b) Leonard, N. M.; Wieland, L.
C.; Mohan, R. S. Tetrahedron 2002, 58, 8373–8397.
3. (a) Evans, P. A.; Andrews, W. J. Tetrahedron Lett. 2005, 46,
5625–5627; (b) Srivastava, N.; Banik, B. K. J. Org. Chem.
2003, 68, 2109–2114.
4. (a) Cunha, S.; Lima, B. R.; Souza, A. R. Tetrahedron Lett.
2002, 43, 49–52; (b) Cunha, S.; Rodrigues, M. T., Jr.; Silva,
C. C.; Napolitano, H. B.; Vencato, I.; Lariucci, C.
Tetrahedron 2005, 61, 10536–10540.
R1
R2
BiI3 (5mol%)
N
N
R1
R3
N
H
N
H
+
R4
N
R4
NaBiO3, Et3N
CH3CN, reflux
2a-j
4a-j
3a-d
Guanidine Thiourea R1/R2 Amine R3/R4
Yield Time
(%)
(h)
4a
4b
4c
4d
4e
4f
Bz/p-CH3OPh
Bz/Ph
Bz/p-CH3OPh
Bz/p-CH3Ph
Bz/Ph
Bz/c-C6H11
Bz/o-ClPh
Bz/p-CH3OPh
Ph/p-CH3OPh
Ph/c-C6H11
p-CH3OPh/H
p-CH3OPh/H
c-C6H11/H
c-C6H11/H
c-C6H11/H
92
75
86
65
77
69
91
10
12
3
8
3
21
11
5
3
7
c-C6H11/H
c-C6H11/c-C6H11
4g
4h
4i
CH2CH2OCH2CH2 97
CH2CH2OCH2CH2 95
4j
c-C6H11/H
95
5. The use of NaBiO3 in organic transformations is scarcely
reported. For reviews, see Refs. 2a,2b.
6. The general synthetic procedure is as follows: to a solution
of 0.5 mmol of thiourea in 7 mL of CH3CN were added
0.5 mmol of amine and 1 mmol of Et3N, and then 0.5 mmol
of NaBiO3 and 0.025 mmol of BiI3 were added to the
solution with vigorous magnetic stirring. The suspension
was left stirring for 10 min at room temperature and
became black. After this time, it was heated at reflux at the
indicated time in Table 1. The solvent was evaporated and
20 mL of CH2Cl2 was added. The suspension was filtered
through a pad of Celite and the pad washed with 10 mL of
CH2Cl2. The filtrate was dried over anhydrous MgSO4,
filtrated and the solvent was evaporated. The crude residue
was recrystallized from Et2O/petroleum ether affording a
solid or a viscous oleo as indicated in each case.
BiX3
X = I, NO3
S
(SOx) y-
2
1
R
R
Bi3+
N
H
N
H
[O]
Bi3+
S
Bi2S3
2
1
R
R
N
H
N
H
+
Et3NH
R
Compound 4d: Mp 100–103 °C. IR (KBr): 3287, 1570 cmÀ1
.
1
Et3N
1H NMR (CDCl3): 1.10–2.10 (10H, m); 2.34 (3H, s); 4.15
(1H, m); 4.80 (1H, br); 7.13 (2H, d, J = 8.0 Hz); 7.21 (2H, d,
J = 8.0 Hz); 7.38–7.45 (3H, m); 8.24 (2H, d, J = 6.3 Hz);
11.97 (1H, br). 13C NMR (CDCl3): 20.9 (CH3); 24.7 (CH2);
25.5 (CH2); 33.1 (CH2) 50.0 (CH); 125.3 (CH); 127.7 (CH);
129.0 (CH); 130.9 (CH); 133.4 (C); 136.6 (C); 138.8 (C);
158.0 (C); 177.3 (C).
N
C N
2
R
3
R3NH2
R
N
2
1
R
R
N
H
N
H
Compound 4e: Mp 107–110 °C. IR (KBr): 3250, 1570 cmÀ1
.
1H NMR (CDCl3): 1.10–2.15 (10H, m); 4.18 (1H, m); 4.84
(1H, br); 7.20–7.30 (3H, m); 7.35–7.50 (5H, m); 8.26 (2H, d,
J = 6.6 Hz); 12.97 (1H, br). 13C NMR (CDCl3): 24.7 (CH2);
25.4 (CH2). 33.0 (CH2); 50.1 (CH); 125.0 (CH): 126.5 (CH);
127.8 (CH); 128.9 (CH); 129.9 (CH); 131.03 (CH); 136.2 (C);
138.6 (C); 157.7 (C); 177.4 (C).
Figure 1. Proposed catalytic cycle for the Bi(III)-promoted guanyl-
ation of thioureas.
of inorganic thiophiles and no excess of amine was
required, with yields and scope comparable with the
stoichiometric HgCl2 protocol.6 Efforts are underway
to elucidate the mechanistic details of this reaction and
define the scope, limitations and synthetic applications
to natural and unnatural bioactive guanidines.
Compound 4g: Mp 125–127 °C; IR (KBr): 3065, 1610, 1544,
1
1366 cmÀ1. H NMR (CDCl3): 1.00–2.25 (20H, m); 3.25–
3.40 (2H, m); 7.00–7.20 (2H, m); 7.30–7.50 (2H, m); 8.26 (1H,
d, J = 6.6 Hz); 11.07 (1H, br). 13C NMR (CDCl3): 25.5
(CH2); 26.3 (CH2); 31.1 (CH2); 58.6 (CH); 125.2 (CH); 126.0
(CH); 127.2 (CH); 127.2 (CH); 127.8 (CH); 128.7 (C); 129.0
(CH); 130.0 (CH); 130.9 (CH); 138.5 (C); 160.7 (C); 175.4 (C).
Compound 4h: oil. IR (film): 3013, 1600, 1575 cmÀ1 1H
.
NMR (CDCl3): 3.55 (4H, m); 3.67 (4H, m); 3.78 (3H, s); 6.85
(2H, d, J = 8.8 Hz); 7.06 (2H, d, J = 8.8 Hz); 7.40–7.55 (3H,
m); 8.22 (2H, d, J = 6.9 Hz); 11.85 (1H, br). 13C
NMR(CDCl3): 46.9 (CH2); 55.4 (CH3); 66.3 (CH2); 114.8
(CH); 123.4 (CH); 127.9 (CH); 129.2 (CH); 131.5 (CH); 132.3
(C); 138.2 (C); 156.9 (C); 160.2 (C); 177.1 (C).
Acknowledgements
The authors thank CNPq and FAPESB for support and
fellowships, and Professor A.C.S. Costa for donation of
BiI3.