Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Journal of the American Chemical Society
Communication
12, 4051. (h) Hu, X.; Chen, J.; Xiao, W. Angew. Chem., Int. Ed. 2017,
56, 1960.
(4) (a) Robertson, J.; Pillai, J.; Lush, R. K. Chem. Soc. Rev. 2001, 30,
94. (b) Betancor, C.; Concepcion, J. I.; Hernandez, R.; Salazar, J. A.;
Suarez, E. J. Org. Chem. 1983, 48, 4430. (c) Betancor, C.; Freire, R.;
coordination−LMCT−homolysis pathway for substrate oxida-
tion. Pleasingly, the mild and redox-neutral conditions
employed by this reaction technology proved to be tolerant
of silyl-protected alcohol-containing substrates (7 and 18).
Additionally, no degradation was observed for these substrates
containing ester (9), amino (10 and 15), azido (11), ketal (12),
allyl (17), and nitrile (13) functionality. Complex polycyclic
systems, such as monosilylated lithocholanyl alcohol, can also
be selectively installed with the nitrogenous functionality,
demonstrating the applicability of this manifold to complex
molecule synthesis (18).
In summary, we have developed a general strategy for
catalytic, alkoxy-radical-mediated, site-selective distal function-
alization of primary alcohols using an inexpensive cerium
photocatalyst. Without the need for prefunctionalization,
utilizing mild and redox-neutral conditions, this atom-
economical and operationally simple protocol has been applied
to a wide array of alcohols. The photoinduced LMCT
activation mode is ideal for direct activation of heteroatom-
containing functionality and is expected to offer new
opportunities for the development of visible-light photoredox
transformations.
Per
́
ez-Martín, I.; Prange,
́
T.; Suar
́
ez, E. Org. Lett. 2002, 4, 1295.
ez, E. J. Org. Chem. 2003, 68,
(d) Francisco, C. G.; Herrera, A. J.; Suar
́
1012. (e) Reddy, L. R.; Reddy, B. V. S.; Corey, E. J. Org. Lett. 2006, 8,
2819. (f) Chen, K.; Richter, J. M.; Baran, P. S. J. Am. Chem. Soc. 2008,
130, 7247. (g) Shi, Y.; Yang, B.; Cai, S.; Gao, S. Angew. Chem., Int. Ed.
2014, 53, 9539.
(5) (a) Qin, Q.; Yu, S. Org. Lett. 2015, 17, 1894. (b) Martinez, C.;
Muniz, K. Angew. Chem., Int. Ed. 2015, 54, 8287. (c) Zhang, J.; Li, Y.;
Zhang, F.; Hu, C.; Chen, Y. Angew. Chem., Int. Ed. 2016, 55, 1872.
(d) Wang, C.; Harms, K.; Meggers, E. Angew. Chem., Int. Ed. 2016, 55,
13495. (e) Wappes, E. A.; Fosu, S. C.; Chopko, T. C.; Nagib, D. A.
Angew. Chem., Int. Ed. 2016, 55, 9974. (f) Wappes, E. A.; Nakafuku, K.
M.; Nagib, D. A. J. Am. Chem. Soc. 2017, 139, 10204. (g) Becker, P.;
Duhamel, T.; Stein, C. J.; Reiher, M.; Muniz, K. Angew. Chem., Int. Ed.
2017, 56, 8004.
(6) (a) Chen, D.-F.; Chu, J. C. K.; Rovis, T. J. Am. Chem. Soc. 2017,
139, 14897. (b) Yuan, W.; Zhou, Z.; Gong, L.; Meggers, E. Chem.
Commun. 2017, 53, 8964. (c) Wu, X.; Wang, M.; Huan, L.; Wang, D.;
Wang, J.; Zhu, C. Angew. Chem., Int. Ed. 2018, DOI: 10.1002/
anie.201709025.
(7) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.
(8) (a) Gentry, E. C.; Knowles, R. R. Acc. Chem. Res. 2016, 49, 1546.
(b) Yayla, H. G.; Wang, H.; Tarantino, K. T.; Orbe, H. S.; Knowles, R.
R. J. Am. Chem. Soc. 2016, 138, 10794.
(9) (a) Balzani, V.; Ceroni, P.; Juris, A. Photochemistry and
Photophysics: Concepts, Research, Applications. Wiley-VCH: Weinheim,
Germany, 2014. (b) Natarajan, E.; Natarajan, P. Inorg. Chem. 1992, 31,
1215. (c) Hartshorn, R. M.; Telfer, S. G. J. Chem. Soc., Dalton Trans.
1999, 3565.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures and additional data (PDF)
AUTHOR INFORMATION
Corresponding Author
ORCID
■
(10) (a) Tanielian, C. Coord. Chem. Rev. 1998, 178-180, 1165.
(b) Ravelli, D.; Protti, S.; Fagnoni, M. Acc. Chem. Res. 2016, 49, 2232.
̌
̌
́ ́ ́
Z.; Maksimovic, Z.; Jeremic, D.;
(c) Mihailovic,
Lorenc, L.; Mamuzic,
cepcion, J. I.; Francisco, C. G.; Hernan
́
M. L.; Cekovic,
R. I. Tetrahedron 1965, 21, 2799. (d) Con-
dez, R.; Salazar, J. A.; Suarez, E.
́
Zhiwei Zuo: 0000-0002-3361-3220
́
́
́
Author Contributions
Tetrahedron Lett. 1984, 25, 1953. (e) Tsunoi, S.; Ryu, I.; Sonoda, N. J.
Am. Chem. Soc. 1994, 116, 5473. (f) Tsunoi, S.; Ryu, I.; Okuda, T.;
Tanaka, M.; Komatsu, M.; Sonoda, N. J. Am. Chem. Soc. 1998, 120,
8692. (g) Zhang, G.; Kim, G.; Choi, W. Energy Environ. Sci. 2014, 7,
954. (h) Hwang, S. J.; Powers, D. C.; Maher, A. G.; Anderson, B. L.;
Hadt, R. G.; Zheng, S. L.; Chen, Y. S.; Nocera, D. G. J. Am. Chem. Soc.
2015, 137, 6472. (i) Hwang, S. J.; Anderson, B. L.; Powers, D. C.;
Maher, A. G.; Hadt, R. G.; Nocera, D. G. Organometallics 2015, 34,
4766. (j) Shields, B. J.; Doyle, A. G. J. Am. Chem. Soc. 2016, 138,
12719.
(11) (a) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science
2012, 338, 647. (b) Ziegler, D. T.; Choi, J.; Munoz-Molina, J. M.;
Bissember, A. C.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2013, 135,
13107. (c) Do, H. Q.; Bachman, S.; Bissember, A. C.; Peters, J. C.; Fu,
G. C. J. Am. Chem. Soc. 2014, 136, 2162. (d) Ratani, T. S.; Bachman,
S.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc. 2015, 137, 13902.
(e) Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.;
Peters, J. C.; Fu, G. C. Science 2016, 351, 681.
(12) (a) Yin, H.; Carroll, P. J.; Anna, J. M.; Schelter, E. J. J. Am.
Chem. Soc. 2015, 137, 9234. (b) Yin, H.; Carroll, P. J.; Manor, B. C.;
Anna, J. M.; Schelter, E. J. J. Am. Chem. Soc. 2016, 138, 5984. (c) Yin,
H.; Jin, Y.; Hertzog, J. E.; Mullane, K. C.; Carroll, P. J.; Manor, B. C.;
Anna, J. M.; Schelter, E. J. J. Am. Chem. Soc. 2016, 138, 16266.
(13) Guo, J.-J.; Hu, A.; Chen, Y.; Sun, J.; Tang, H.; Zuo, Z. Angew.
Chem., Int. Ed. 2016, 55, 15319.
(14) (a) Vogler, A.; Kunkely, H. Inorg. Chim. Acta 2006, 359, 4130.
(b) Sheldon, R. A.; Kochi, J. K. J. Am. Chem. Soc. 1968, 90, 6688.
(c) Kunkely, H.; Vogler, A. J. Photochem. Photobiol., A 2001, 146, 63.
(15) (a) Bradley, D. C.; Chatterjee, A. K.; Wardlaw, W. J. Chem. Soc.
1956, 2260. (b) Young, L. B.; Trahanovsky, W. S. J. Am. Chem. Soc.
§A.H. and J.-J.G. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Natural Science Foundation of China
(21772121) and the “Thousand Plan” Youth Program for
financial support and J. M. Lipshultz (Princeton University) for
discussions.
REFERENCES
■
(1) (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev.
2011, 40, 102. (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C.
Chem. Rev. 2013, 113, 5322. (c) Schultz, D. M.; Yoon, T. P. Science
2014, 343, 1239176.
(2) (a) Musacchio, A. J.; Nguyen, L. Q.; Beard, G. H.; Knowles, R. R.
J. Am. Chem. Soc. 2014, 136, 12217. (b) Zuo, Z.; Ahneman, D. T.;
Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014,
345, 437. (c) Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C. Science
2015, 349, 1532. (d) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.;
Knowles, R. R. Nature 2016, 539, 268. (e) Chu, J. C. K.; Rovis, T.
Nature 2016, 539, 272.
(3) (a) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J.
Am. Chem. Soc. 1960, 82, 2640. (b) Wolff, M. E. Chem. Rev. 1963, 63,
55. (c) Majetich, G.; Wheless, K. Tetrahedron 1995, 51, 7095.
(d) Hartung, J.; Gottwald, T.; Spehar, K. Synthesis 2002, 1469.
(e) Cekovic, Z. Tetrahedron 2003, 59, 8073. (f) Zard, S. Z. Chem. Soc.
Rev. 2008, 37, 1603. (g) Chiba, S.; Chen, H. Org. Biomol. Chem. 2014,
D
DOI: 10.1021/jacs.7b13131
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX